English
|
正體中文
|
简体中文
|
Items with full text/Total items : 12145/12927 (94%)
Visitors : 938670 Online Users : 475
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by
NTU Library IR team.
Scope
All of NHRI
分子與基因醫學研究所
生技與藥物研究所
生醫工程與奈米醫學研究所
免疫醫學研究中心
神經及精神醫學研究中心
細胞及系統醫學研究所
感染症與疫苗研究所
群體健康科學研究所
癌症研究所
國家環境醫學研究所
國家蚊媒傳染病防治研究中心
高齡醫學暨健康福祉研究中心
論壇
生醫資源中心
研究生培育合作學程
核心儀器設施中心
病理核心實驗室
實驗動物中心
行政管理部門
圖書館
Tips:
please add "double quotation mark" for query phrases to get precise results
please goto advance search for comprehansive author search
Adv. Search
Home
‧
Login
‧
Upload
‧
Help
‧
About
‧
Administer
國家衛生研究院 NHRI
>
Items for Author
Loading...
Category
Loading community tree, please wait....
Year
Loading year class tree, please wait....
Items for Author "Wong, PY"
Return to Browse by Author
Showing 21 items.
Collection
Date
Title
Relation
Bitstream
[其他] 會議論文/會議摘要
2019-10
A neural network-based land use regression model to estimate spatial-temporal variability of nitrogen dioxide
-
[其他] 期刊論文
2024-09
APOE-epsilon4 alleles modify the decline of MMSE scores associated with time-dependent PM2.5 exposure: Findings from a community-based longitudinal cohort study
-
[其他] 期刊論文
2024-05-15
Explainable geospatial-artificial intelligence models for the estimation of PM2.5 concentration variation during commuting rush hours in Taiwan
-
[其他] 期刊論文
2024-02-10
Non-linear association between long-term air pollution exposure and risk of metabolic dysfunction-associated steatotic liver disease
-
[其他] 期刊論文
2023-12-16
Evaluating long-term and high spatiotemporal resolution of wet-bulb globe temperature through land-use based machine learning model
-
[其他] 期刊論文
Geo-AI prediction model on estimating spatiotemporal variation of PM2.5 concentrations in morning and evening rush hours- a case study in taipei metropolitan, Taiwan
-
[其他] 期刊論文
2023-09-15
Estimating the daily average concentration variations of PCDD/Fs in Taiwan using a novel Geo-AI based ensemble mixed spatial model
-
[其他] 期刊論文
2023-03-25
An ensemble mixed spatial model in estimating long-term and diurnal variations of PM2.5 in Taiwan
-
[其他] 期刊論文
2021-05
Incorporating land-use regression into machine learning algorithms in estimating the spatial-temporal variation of carbon monoxide in Taiwan
-
[蔡慧如] 期刊論文
2022-07-05
Examining the benefits of greenness on reducing suicide mortality rate: A global ecological study
-
[許志成] 會議論文/會議摘要
2016-10
Multidimensional effects of a diabetes management program in a Taipei community hospital - a 7-year prospective follow-up study
-
[許志成] 會議論文/會議摘要
2016-10
Factors related to diabetes' ABC control in a Taipei community hospital - A prospective follow-up study
-
[陳保中] 期刊論文
2022-08
A mixed spatial prediction model in estimating spatiotemporal variations in benzene concentrations in Taiwan
-
[陳裕政] 期刊論文
2024-06
Geospatial artificial intelligence for estimating daytime and nighttime nitrogen dioxide concentration variations in Taiwan: A spatial prediction model
-
[陳裕政] 期刊論文
2024-03-15
A machine learning-based ensemble model for estimating diurnal variations of nitrogen oxide concentrations in Taiwan
-
[陳裕政] 期刊論文
2024-02-01
Exposure estimates of PM2.5 using the land-use regression with machine learning and microenvironmental exposure models for elders: Validation and comparison
-
[陳裕政] 期刊論文
2024-02
Estimating morning and evening commute period O(3) concentration in Taiwan using a fine spatial-temporal resolution ensemble mixed spatial model with Geo-AI technology
-
[陳裕政] 期刊論文
2023-03-15
A Geo-AI-based ensemble mixed spatial prediction model with fine spatial-temporal resolution for estimating daytime/nighttime/daily average ozone concentrations variations in Taiwan
-
[陳裕政] 期刊論文
2022-07-01
An alternative approach for estimating large-area indoor PM2.5 concentration – A case study of schools
-
[陳裕政] 期刊論文
2021-10-01
Using land-use machine learning models to estimate daily NO2 concentration variations in Taiwan
-
[陳裕政] 期刊論文
2021-05-15
Using a land use regression model with machine learning to estimate ground level PM2.5
-
DSpace Software
Copyright © 2002-2004
MIT
&
Hewlett-Packard
/
Enhanced by
NTU Library IR team
Copyright ©
-
Feedback