國家衛生研究院 NHRI:Item 3990099045/10081
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 907427      在线人数 : 959
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/10081


    题名: Composite likelihood approach to the regression analysis of spatial multivariate ordinal data and spatial compositional data with exact zero values
    作者: Feng, XP;Zhu, J;Lin, PS;Steen-Adams, MM
    贡献者: Division of Biostatistics and Bioinformatics
    摘要: In many environmental and ecological studies, it is of interest to model compositional data. One approach is to consider positive random vectors that are subject to a unit-sum constraint. In landscape ecological studies, it is common that compositional data are also sampled in space with some elements of the composition absent at certain sampling sites. In this paper, we first propose a practical spatial multivariate ordered probit model for multivariate ordinal data, where the response variables can be viewed as the discretized non-negative compositions without the unit-sum constraint. We then propose a novel two-stage spatial mixture Dirichlet regression model. The first stage models the spatial dependence and the presence of exact zero values, and the second stage models all the non-zero compositional data. A maximum composite likelihood approach is developed for parameter estimation and inference in both the spatial multivariate ordered probit model and the two-stage spatial mixture Dirichlet regression model. The standard errors of the parameter estimates are computed by an estimate of the Godambe information matrix. A simulation study is conducted to evaluate the performance of the proposed models and methods. A land cover data example in landscape ecology further illustrates that accounting for spatial dependence can improve the accuracy in the prediction of presence/absence of different land covers as well as the magnitude of land cover compositions.
    日期: 2017-03
    關聯: Environmental and Ecological Statistics. 2017 Mar;24(1):39-68.
    Link to: http://dx.doi.org/10.1007/s10651-016-0360-0
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1352-8505&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000395511800003
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84994157005
    显示于类别:[林培生] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP84994157005.pdf989KbAdobe PDF466检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈