國家衛生研究院 NHRI:Item 3990099045/10352
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 906161      在线人数 : 763
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/10352


    题名: A coaxial dual-element focused ultrasound probe for guidance of epidural catheterization: An experimental study
    作者: Dong, GC;Chiu, LC;Ting, CK;Hsu, JR;Huang, CC;Chang, Y;Chen, GS
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Ultrasound guidance for epidural block has improved clinical blind-trial problems but the design of present ultrasonic probes poses operating difficulty of ultrasound-guided catheterization, increasing the failure rate. The purpose of this study was to develop a novel ultrasonic probe to avoid needle contact with vertebral bone during epidural catheterization. The probe has a central circular passage for needle insertion. Two focused annular transducers are deployed around the passage for on-axis guidance. A 17-gauge insulated Tuohy needle containing the self-developed fiber-optic-modified stylet was inserted into the back of the anesthetized pig, in the lumbar region under the guidance of our ultrasonic probe. The inner transducer of the probe detected the shallow echo signals of the peak-peak amplitude of 2.8 V over L3 at the depth of 2.4 cm, and the amplitude was decreased to 0.8 V directly over the L3 to L4 interspace. The outer transducer could detect the echoes from the deeper bone at the depth of 4.5 cm, which did not appear for the inner transducer. The operator tilted the probe slightly in left-right and cranial-caudal directions until the echoes at the depth of 4.5 cm disappeared, and the epidural needle was inserted through the central passage of the probe. The needle was advanced and stopped when the epidural space was identified by optical technique. The needle passed without bone contact. Designs of the hollow probe for needle pass and dual transducers with different focal lengths for detection of shallow and deep vertebrae may benefit operation, bone/nonbone identification, and cost.
    日期: 2017-09
    關聯: Ultrasonic Imaging. 2017 Sep;39(5):283-294.
    Link to: http://dx.doi.org/10.1177/0161734617697740
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0161-7346&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000407605200002
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85027413973
    显示于类别:[陳景欣] 期刊論文
    [董國忠] 期刊論文

    文件中的档案:

    没有与此文件相关的档案.



    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈