English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 908408      Online Users : 992
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/10458


    Title: Comparison of different cell type correction methods for genome-scale epigenetics studies
    Authors: Kaushal, A;Zhang, H;Karmaus, WJJ;Ray, M;Torres, MA;Smith, AK;Wang, SL
    Contributors: National Institute of Environmental Health Sciences
    Abstract: BACKGROUND: Whole blood is frequently utilized in genome-wide association studies of DNA methylation patterns in relation to environmental exposures or clinical outcomes. These associations can be confounded by cellular heterogeneity. Algorithms have been developed to measure or adjust for this heterogeneity, and some have been compared in the literature. However, with new methods available, it is unknown whether the findings will be consistent, if not which method(s) perform better. RESULTS: Methods: We compared eight cell-type correction methods including the method in the minfi R package, the method by Houseman et al., the Removing unwanted variation (RUV) approach, the methods in FaST-LMM-EWASher, ReFACTor, RefFreeEWAS, and RefFreeCellMix R programs, along with one approach utilizing surrogate variables (SVAs). We first evaluated the association of DNA methylation at each CpG across the whole genome with prenatal arsenic exposure levels and with cancer status, adjusted for estimated cell-type information obtained from different methods. We then compared CpGs showing statistical significance from different approaches. For the methods implemented in minfi and proposed by Houseman et al., we utilized homogeneous data with composition of some blood cells available and compared them with the estimated cell compositions. Finally, for methods not explicitly estimating cell compositions, we evaluated their performance using simulated DNA methylation data with a set of latent variables representing "cell types". RESULTS: Results from the SVA-based method overall showed the highest agreement with all other methods except for FaST-LMM-EWASher. Using homogeneous data, minfi provided better estimations on cell types compared to the originally proposed method by Houseman et al. Further simulation studies on methods free of reference data revealed that SVA provided good sensitivities and specificities, RefFreeCellMix in general produced high sensitivities but specificities tended to be low when confounding is present, and FaST-LMM-EWASher gave the lowest sensitivity but highest specificity. CONCLUSIONS: Results from real data and simulations indicated that SVA is recommended when the focus is on the identification of informative CpGs. When appropriate reference data are available, the method implemented in the minfi package is recommended. However, if no such reference data are available or if the focus is not on estimating cell proportions, the SVA method is suggested.
    Date: 2017-04-14
    Relation: BMC Bioinformatics. 2017 Apr 14;18:Article number 216.
    Link to: http://dx.doi.org/10.1186/s12859-017-1611-2
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1471-2105&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000399190400001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85018522240
    Appears in Collections:[王淑麗] 期刊論文

    Files in This Item:

    File Description SizeFormat
    PUB28410574.pdf584KbAdobe PDF267View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback