國家衛生研究院 NHRI:Item 3990099045/10740
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 914396      Online Users : 1360
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/10740


    Title: MicroRNA mediation of endothelial inflammatory response to smooth muscle cells and its inhibition by atheroprotective shear stress
    Authors: Chiu, JJ;Chen, LJ
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: In atherosclerotic lesions, synthetic smooth muscle cells (sSMCs) induce aberrant microRNA (miR) profiles in endothelial cells (ECs) under flow stagnation. Increase in shear stress induces favorable miR modulation to mitigate sSMC-induced inflammation. We addressed the role of miRs in sSMC-induced EC inflammation and its inhibition by shear stress. Coculturing ECs with sSMCs under static condition causes initial increases of 4 anti-inflammatory miRs (146a/708/451/98) in ECs followed by decreases below basal levels at 7 days; the increases for miR-146a/708 peaked at 24 hours and those for miR-451/98 lasted for only 6 to 12 hours. Shear stress (12 dynes/cm(2)) to cocultured ECs for 24 hours augments these 4 miR expressions. In vivo, these 4 miRs are highly expressed in neointimal ECs in injured arteries under physiological levels of flow, but not expressed under flow stagnation. MiR-146a, miR-708, miR-451, and miR-98 target interleukin-1 receptor-associated kinase, inhibitor of nuclear factor-κB kinase subunit-γ, interleukin-6 receptor, and conserved helix-loop-helix ubiquitous kinase, respectively, to inhibit nuclear factor-κB signaling, which exerts negative feedback control on the biogenesis of these miRs. Nuclear factor-E2-related factor (Nrf)-2 is critical for shear-induction of miR-146a in cocultured ECs. Silencing either Nrf-2 or miR-146a led to increased neointima formation of injured rat carotid artery under physiological levels of flow. Overexpressing miR-146a inhibits neointima formation of rat or mouse carotid artery induced by injury or flow cessation. Our findings indicate that Nrf-2-mediated miR-146a expression is augmented by atheroprotective shear stress in ECs adjacent to sSMCs to inhibit neointima formation of injured arteries.
    Date: 2016-04
    Relation: The FASEB Journal. 2016 Apr;30(1, Suppl.):Meeting Abstract lb564.
    Link to: http://www.fasebj.org/content/30/1_Supplement/lb564
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0892-6638&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000406444700138
    Appears in Collections:[Jeng-Jiann Chiu ] Conference Papers/Meeting Abstract

    Files in This Item:

    File Description SizeFormat
    ISI000406444700138.pdf37KbAdobe PDF326View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback