English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 848772      Online Users : 1310
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/10920


    Title: Matrix stiffness determines the phenotype of vascular smooth muscle cell in vitro and in vivo: Role of DNA methyltransferase 1
    Authors: Xie, SA;Zhang, T;Wang, J;Zhao, F;Zhang, YP;Yao, WJ;Hur, SS;Yeh, YT;Pang, W;Zheng, LS;Fan, YB;Kong, W;Wang, X;Chiu, JJ;Zhou, J
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: Cells perceive the physical cues such as perturbations of extracellular matrix (ECM) stiffness, and translate these stimuli into biochemical signals controlling various aspects of cell behavior, which contribute to the physiological and pathological processes of multiple organs. In this study, we tested the hypothesis that during arterial stiffening, vascular smooth muscle cells (SMCs) sense the increase of ECM stiffness, which modulates the cellular phenotype through the regulation in DNA methyltransferases 1 (DNMT1) expression. Moreover, we hypothesized that the mechanisms involve intrinsic stiffening and deficiency in contractility of vascular SMCs. Substrate stiffening was mimicked in vitro with polyacrylamide gels. A contractile-to-synthetic phenotypic transition was induced by substrate stiffening in vascular SMCs through the down-regulation of DNMT1 expression. DNMT1 repression was also observed in the tunica media of mice aortas in an acute aortic injury model and a chronic kidney failure model, as well as in the tunica intima of human carotid arteries with calcified atherosclerotic lesions. DNMT1 inhibition facilitates arterial stiffening in vivo and promotes osteogenic transdifferentiation, calcification and cellular stiffening of vascular SMCs in vitro. These effects may be attributable, at least in part, to the role of DNMT1 in regulating the promoter activities of Transgelin (SM22α) and α-smooth muscle actin (SMA) and the functional contractility of SMCs. We conclude that DNMT1 is a critical regulator that negatively regulates arterial stiffening via maintaining the contractile phenotype of vascular SMCs. This research may facilitate elucidation of the complex crosstalk between vascular SMCs and their surrounding matrix in healthy and in pathological conditions and provide new insights into the implications for potential targeting of the phenotypic regulatory mechanisms in material-related therapeutic applications.
    Date: 2018-02
    Relation: Biomaterials. 2018 Feb;155:203-216.
    Link to: http://dx.doi.org/10.1016/j.biomaterials.2017.11.033
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0142-9612&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000419539000018
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85034964805
    Appears in Collections:[裘正健] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP85034964805.pdf5068KbAdobe PDF401View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback