English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 907151      Online Users : 868
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/10957


    Title: Cdc7-Dbf4-mediated phosphorylation of HSP90-S164 stabilizes HSP90-HCLK2-MRN complex to enhance ATR/ATM signaling that overcomes replication stress in cancer
    Authors: Cheng, AN;Fan, CC;Lo, YK;Kuo, CL;Wang, HC;Lien, IH;Lin, SY;Chen, CH;Jiang, SS;Chang, IS;Juan, HF;Lyu, PC;Lee, AYL
    Contributors: National Institute of Cancer Research
    Abstract: Cdc7-Dbf4 kinase plays a key role in the initiation of DNA replication and contributes to the replication stress in cancer. The activity of human Cdc7-Dbf4 kinase remains active and acts as an effector of checkpoint under replication stress. However, the downstream targets of Cdc7-Dbf4 contributed to checkpoint regulation and replication stress-support function in cancer are not fully identified. In this work, we showed that aberrant Cdc7-Dbf4 induces DNA lesions that activate ATM/ATR-mediated checkpoint and homologous recombination (HR) DNA repair. Using a phosphoproteome approach, we identified HSP90-S164 as a target of Cdc7-Dbf4 in vitro and in vivo. The phosphorylation of HSP90-S164 by Cdc7-Dbf4 is required for the stability of HSP90-HCLK2-MRN complex and the function of ATM/ATR signaling cascade and HR DNA repair. In clinically, the phosphorylation of HSP90-S164 indeed is increased in oral cancer patients. Our results indicate that aberrant Cdc7-Dbf4 enhances replication stress tolerance by rewiring ATR/ATM mediated HR repair through HSP90-S164 phosphorylation and by promoting recovery from replication stress. We provide a new solution to a subtyping of cancer patients with dominant ATR/HSP90 expression by combining inhibitors of ATR-Chk1, HSP90, or Cdc7 in cancer combination therapy.
    Date: 2017-12
    Relation: Scientific Reports. 2017 Dec;7:Article number 17024.
    Link to: http://dx.doi.org/10.1038/s41598-017-17126-2
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2045-2322&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000417051000074
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85037062839
    Appears in Collections:[李岳倫] 期刊論文
    [張憶壽] 期刊論文
    [江士昇] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP85037062839.pdf4080KbAdobe PDF356View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback