國家衛生研究院 NHRI:Item 3990099045/11188
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 955892      線上人數 : 843
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/11188


    題名: An instantaneous spatiotemporal model for predicting traffic-related ultrafine particle concentration through mobile noise measurements
    作者: Lin, MY;Guo, YX;Chen, YC;Chen, WT;Young, LH;Lee, KJ;Wu, ZY;Tsai, PJ
    貢獻者: National Institute of Environmental Health Sciences
    摘要: People living near roadways are exposed to high concentrations of ultrafine particles (UFP, diameter < 100 nm). This can result in adverse health effects such as respiratory illness and cardiovascular diseases. However, accurately characterizing the UFP number concentration requires expensive sets of instruments. The development of an UFP surrogate with cheap and convenient measures is needed. In this study, we used a mobile measurement platform with a Fast Mobility Particle Sizer (FMPS) and sound level meter to investigate the spatiotemporal relations of noise and UFP and identify the hotspots of UFP. UFP concentration levels were significantly influenced by temporal and spatial variations (p < 0.001). We proposed a Generalized Additive Models to predict UFP number concentration in the study area. The model uses noise and meteorological covariates to predict the UFP number concentrations at an industrial site in Taichung, Taiwan. During the one year sampling campaign from fall 2013 to summer 2014, mobile measurements were performed at least one week for each season, both on weekdays and weekends. The proposed model can explain 80% of deviance and has coefficient of determination (R2) of 0.77. Moreover, the developed UFP model was able to adequately predict UFP concentrations, and can provide people with a convenient way to determine UFP levels. Finally, the results from this study could help facilitate the future development of noise mobile measurement.
    日期: 2018-09
    關聯: Science of the Total Environment. 2018 Sep;636:1139-1148.
    Link to: http://dx.doi.org/10.1016/j.scitotenv.2018.04.248
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0048-9697&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000436599000112
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85046745741
    顯示於類別:[陳裕政] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    SCP85046745741.pdf2463KbAdobe PDF348檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋