國家衛生研究院 NHRI:Item 3990099045/11409
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 855178      線上人數 : 1013
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/11409


    題名: General retrospective mega-analysis framework for rare variant association tests
    作者: Chien, LC;Chiu, YF
    貢獻者: Institute of Population Health Sciences
    摘要: Here, we describe a retrospective mega-analysis framework for gene- or region-based multimarker rare variant association tests. Our proposed mega-analysis association tests allow investigators to combine longitudinal and cross-sectional family- and/or population-based studies. This framework can be applied to a continuous, categorical, or survival trait. In addition to autosomal variants, the tests can be applied to conduct mega-analyses on X-chromosome variants. Tests were built on study-specific region- or gene-level quasiscore statistics and, therefore, do not require estimates of effects of individual rare variants. We used the generalized estimating equation approach to account for complex multiple correlation structures between family members, repeated measurements, and genetic markers. While accounting for multilevel correlations and heterogeneity across studies, the test statistics were computationally efficient and feasible for large-scale sequencing studies. The retrospective aspect of association tests helps alleviate bias due to phenotype-related sampling and type I errors due to misspecification of phenotypic distribution. We evaluated our developed mega-analysis methods through comprehensive simulations with varying sample sizes, covariates, population stratification structures, and study designs across multiple studies. To illustrate application of the proposed framework, we conducted a mega-association analysis combining a longitudinal family study and a cross-sectional case–control study from Genetic Analysis Workshop 19.
    日期: 2018-10
    關聯: Genetic Epidemiology. 2018 Oct;42(7):621-635.
    Link to: http://dx.doi.org/10.1002/gepi.22147
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0741-0395&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000447523100003
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85052916988
    顯示於類別:[邱燕楓] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    SCP85052916988.pdf982KbAdobe PDF300檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋