English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 903887      Online Users : 679
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/11485


    Title: Inflammatory response and PM2.5 exposure of urban traffic conductors
    Authors: Chao, HR;Hsu, JW;Ku, HY;Wang, SL;Huang, HB;Liou, SH;Tsou, TC
    Contributors: National Institute of Environmental Health Sciences;National Institute of Cancer Research
    Abstract: Human exposure to airborne PM2.5 has been linked to an increased risk of respiratory and cardiovascular diseases, possibly via the activation of systemic inflammation. However, the associations between airborne PM2.5 and systemic inflammation in humans remain inconclusive. Traffic-related air pollutants (TRAPs) are the major source of PM2.5 in urban areas; the adverse health effect of PM2.5 from TRAPs is currently a critical issue of public concern. The present cross-sectional study examines the relationship between PM2.5 exposure and systemic inflammation in order to consider the health impacts of TRAP PM2.5 on urban traffic conductors. All study participants, viz., office-based police officers (the reference) and traffic conductors (the exposure), were requested to carry a personal sampler to determine individual PM2.5 exposure. An adenovirus-based NF-kappa B luciferase reporter assay was used to determine the proinflammatory activity in serum samples collected from the study participants. The blood proinflammatory activity was presented as tumor necrosis factor-alpha (TNF alpha) equivalence (TNF alpha-EQ), which was extrapolated from the sigmoidal semi-logarithmic dose-response curve of the NF-kappa B reporter assay by TNF alpha. The levels of both personal PM2.5 exposure and blood proinflammatory activity (TNF alpha-EQ) in the exposure group (traffic conductors) were significantly higher than in the reference group (office-based police officers) (p < 0.05). The present study reveals a positive and significant association between personal PM2.5 exposure levels and blood TNF alpha-EQ levels in a linear regression model of y = 0.511x - 3.062 (y = log TNF alpha-EQ and x = log PM2.5; R = 0.231 and p = 0.047); the results suggest that exposure to TRAP PM2.5 significantly contributes to increased systemic inflammation in humans. This research provides clear evidence that long-term occupational exposure to TRAPs causes adverse health impacts, i.e., inflammation, on traffic conductors.
    Date: 2018-10
    Relation: Aerosol and Air Quality Research. 2018 Oct;18(10):2633-2642.
    Link to: http://dx.doi.org/10.4209/aaqr.2018.04.0132
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1680-8584&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000445921200012
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85055195246
    Appears in Collections:[鄒粹軍] 期刊論文
    [劉紹興] 期刊論文
    [王淑麗] 期刊論文
    [其他] 期刊論文

    Files in This Item:

    File Description SizeFormat
    ISI000445921200012.pdf478KbAdobe PDF684View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback