國家衛生研究院 NHRI:Item 3990099045/11769
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 955675      線上人數 : 787
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/11769


    題名: Simulation of cavitation enhanced temperature elevation in a soft tissue during high-intensity focused ultrasound thermal therapy
    作者: Zilonova, EM;Solovchuk, M;Sheu, TWH
    貢獻者: Institute of Biomedical Engineering and Nanomedicine
    摘要: The present study aims to investigate temperature distribution caused by bubble oscillations in a soft tissue during focused ultrasound therapy by introducing a coupled temperature-cavitation model. The proposed model is capable of describing bubble dynamics, viscoelastic properties of surrounding tissue-like medium, temperature distribution inside and outside the bubble, vapor diffusion within the bubble and vapor flux through the bubble wall to the exterior. The continuous temperature distribution inside and outside the oscillating bubble in soft tissue subject to ultrasound wave with high acoustic pressure is presented. The temperature close to the bubble wall can reach the value of about 10 3 K. The elasticity of soft tissue reduces temperature values. The relaxation time effect strongly depends on the period of the ultrasound wave. If the vapor mass flux effect is taken into account in the simulations, the rectified growth effect can be observed, which can lead to the decrease of the temperature values. Due to the growth of the bubble, the effects of elasticity and relaxation time on the temperature become less prominent during several bubble oscillation cycles. The impact of cavitation heat source terms on the exterior temperature was examined and led us to draw conclusion that, even though these heat sources can increase the outside temperature values, they can not be treated as main mechanisms for the temperature elevation during a few microseconds. The performed comparison with uncoupled conventional model for the outside temperature calculation revealed that coupling with inside temperature model delivers incomparably higher values to the bubble's exterior and, therefore, it is essential for the accurate description of the treatment process.
    日期: 2019-05
    關聯: Ultrasonics Sonochemistry. 2019 May;53:11-24.
    Link to: http://dx.doi.org/10.1016/j.ultsonch.2018.12.006
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1350-4177&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000467508100002
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85061312573
    顯示於類別:[馬克沁] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    SCP85061312573.pdf5167KbAdobe PDF380檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋