Previous, we found that the small molecules capable of inhibiting the expression and the pro-adipogenic activity of ZNF521 might improve the osteogenic performance of aging human bone marrow MSCs (bmMSCs), and that fatty acid synthase (FASN) was a critical effector of ZNF521's pro-adipogenic activity. Here, by characterizing the netoglitazone (MCC-555), one of the thiazolidinediones known as adipogenic enhancers, as an inhibitor of ZNF521 expression, we found that MCC-555 indeed also harbored pro-osteoblastic effect. Investigation revealed that MCC-555 might function as a GSK3beta inhibitor to promote osteoblastogenesis and bone formation. Importantly, combination of MCC-555 with FASN knockdown, but not with GW9662 (a PPARgamma2 antagonist), blocked the pro-adipogenic but retained the pro-osteoblastic effect of MCC-555. Using a 3-dimentional culture system, we showed that MCC-555 facilitated the FASN-knockdown of aging human bmMSCs to form cell clusters in scaffolds, and to promote osteoblastic differentiation and biomineralization in cell clusters. These data indicated that MCC-555 promoted bmMSCs to produce bone-like tissues. Our data narrate a thiazolidinedione-based novel strategy to improve the osteogenic performance of aging bmMSCs to support the application of autologous aging bmMSCs in cell therapy and in producing bone-like tissues for repairing bone injury in the elderly.