國家衛生研究院 NHRI:Item 3990099045/11886
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12189/12972 (94%)
造访人次 : 955049      在线人数 : 571
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/11886


    题名: Development of a smart helmet for strategical BCI applications
    作者: Ko, LW;Chang, Y;Wu, PL;Tzou, HA;Chen, SF;Tang, SC;Yeh, CL;Chen, YJ
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Conducting electrophysiological measurements from human brain function provides a medium for sending commands and messages to the external world, as known as a brain-computer interface (BCI). In this study, we proposed a smart helmet which integrated the novel hygroscopic sponge electrodes and a combat helmet for BCI applications; with the smart helmet, soldiers can carry out extra tasks according to their intentions, i.e., through BCI techniques. There are several existing BCI methods which are distinct from each other; however, mutual issues exist regarding comfort and user acceptability when utilizing such BCI techniques in practical applications; one of the main challenges is the trade-off between using wet and dry electroencephalographic (EEG) electrodes. Recently, several dry EEG electrodes without the necessity of conductive gel have been developed for EEG data collection. Although the gel was claimed to be unnecessary, high contact impedance and low signal-to-noise ratio of dry EEG electrodes have turned out to be the main limitations. In this study, a smart helmet with novel hygroscopic sponge electrodes is developed and investigated for long-term usage of EEG data collection. The existing electrodes and EEG equipment regarding BCI applications were adopted to examine the proposed electrode. In the impedance test of a variety of electrodes, the sponge electrode showed performance averaging 118 kOmega, which was comparable with the best one among existing dry electrodes, which averaged 123 kOmega. The signals acquired from the sponge electrodes and the classic wet electrodes were analyzed with correlation analysis to study the effectiveness. The results indicated that the signals were similar to each other with an average correlation of 90.03% and 82.56% in two-second and ten-second temporal resolutions, respectively, and 97.18% in frequency responses. Furthermore, by applying the proposed differentiable power algorithm to the system, the average accuracy of 21 subjects can reach 91.11% in the steady-state visually evoked potential (SSVEP)-based BCI application regarding a simulated military mission. To sum up, the smart helmet is capable of assisting the soldiers to execute instructions with SSVEP-based BCI when their hands are not available and is a reliable piece of equipment for strategical applications.
    日期: 2019-04-19
    關聯: Sensors. 2019 Apr 19;19(8):Article number 1867.
    Link to: http://dx.doi.org/10.3390/s19081867
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1424-8220&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000467644500121
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85065116194
    显示于类别:[其他] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    PUB31010105.pdf1866KbAdobe PDF393检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈