國家衛生研究院 NHRI:Item 3990099045/11968
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 910227      在线人数 : 820
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/11968


    题名: Sp1 acetylation associates with stemness characteristics in temozolomide-resistant glioblastoma
    作者: Chuang, JY;Hsu, CC;Chang, KY;Chang, WC
    贡献者: National Institute of Cancer Research
    摘要: The prognosis of glioblastoma (GBM) is usually poor even following treatment with the first-line chemotherapeutic agent temozolomide (TMZ). One most known resistant mechanism is the presence of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). However, compared with MGMT-mediated innate TMZ resistance, the development of acquired resistance is considered more complex with multi-factorial involvement such as the presence of cancer stem cells (CSCs). In this study, we treated the MGMT-negative GBM cells with TMZ to investigate the acquired resistance, and found that both histone deacetylases (HDACs) and Sp1 are key factors protecting GBM against TMZ. These results include the following: (1) Stemness markers were highly increased in TMZ-resistant GBMs; (2) The activity of HDACs affected the stem-like characteristics and cell survival of GBM stem cells (GSCs); (3) An HDAC1/2/6-selective inhibitor MPT0B291 increased TMZ-sensitivity and induced senescence in TMZ-resistant cells; (4) MPT0B291 suppressed anti-senescence genes (hTERT and BMI1) expression via inhibition Sp1 transactivation; (5) Both HDACs and Sp1 were elevated and interacted with each other in GSCs and resistant GBM cells; (6) TMZ treatment induced Sp1 deacetylation, but MPT0B291 attenuated that. In summary, we verified that HDACs increases Sp1 activation via protein deacetylation and causes Sp1-downstream target upregulation, which may enrich stemness properties and protect GBM against chemotherapeutic drugs.
    日期: 2018-07
    關聯: Cancer Research. 2018 Jul;78(13, Suppl.):Meeting Abstract 5905.
    Link to: http://dx.doi.org/10.1158/1538-7445.Am2018-5905
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0008-5472&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000468819505319
    显示于类别:[張光裕] 會議論文/會議摘要

    文件中的档案:

    没有与此文件相关的档案.



    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈