Although the role of exogenous small interfering RNA (siRNA) and P-element induced wimpy testis (PIWI)-interacting RNA (piRNA) pathways in mosquito antiviral immunity is increasingly better understood, there is still little knowledge regarding the role of mosquito cellular microRNA (miRNA). Identifying direct interactions between the mosquito miRNAs and the RNA genome of arboviruses and choosing the relevant miRNA candidates to explore resulting antiviral mechanisms are critical. Here, we carried out genomic analyses to identify Aedes aegypti miRNAs that potentially interact with various lineages and genotypes of chikungunya, dengue, and Zika viruses. By using prediction tools with distinct algorithms, several miRNA binding sites were commonly found within different genotypes/and or lineages of each arbovirus. We further analyzed those miRNAs that could target more than one arbovirus, required a low energy threshold to form miRNA-viralRNA (vRNA) complexes, and predicted potential RNA structures using RNAhybrid software. We predicted miRNA candidates that might participate in regulating arboviral replication in Ae. aegypti. Even without any experimental validation, which should be done as a next step, this study can shed further light on the role of miRNA in mosquito innate immunity and targets for future studies.