國家衛生研究院 NHRI:Item 3990099045/12348
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 911265      在线人数 : 914
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12348


    题名: Design and verification of a dry sensor-based multi-channel digital active circuit for human brain electroencephalography signal acquisition systems
    作者: Lin, CT;Liu, CH;Wang, PS;King, JT;Liao, LD
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: A brain-computer interface (BCI) is a type of interface/communication system that can help users interact with their environments. Electroencephalography (EEG) has become the most common application of BCIs and provides a way for disabled individuals to communicate. While wet sensors are the most commonly used sensors for traditional EEG measurements, they require considerable preparation time, including the time needed to prepare the skin and to use the conductive gel. Additionally, the conductive gel dries over time, leading to degraded performance. Furthermore, requiring patients to wear wet sensors to record EEG signals is considered highly inconvenient. Here, we report a wireless 8-channel digital active-circuit EEG signal acquisition system that uses dry sensors. Active-circuit systems for EEG measurement allow people to engage in daily life while using these systems, and the advantages of these systems can be further improved by utilizing dry sensors. Moreover, the use of dry sensors can help both disabled and healthy people enjoy the convenience of BCIs in daily life. To verify the reliability of the proposed system, we designed three experiments in which we evaluated eye blinking and teeth gritting, measured alpha waves, and recorded event-related potentials (ERPs) to compare our developed system with a standard Neuroscan EEG system.
    日期: 2019-10-25
    關聯: Micromachines. 2019 Oct 25;10(11):Article number 720.
    Link to: http://dx.doi.org/10.3390/mi10110720
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2072-666X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000502255300006
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85075574505
    显示于类别:[廖倫德] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB31731489.pdf4136KbAdobe PDF365检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈