國家衛生研究院 NHRI:Item 3990099045/12375
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 857836      線上人數 : 840
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12375


    題名: Preparation of polyurethane-graphene nanocomposite and evaluation of neurovascular regeneration
    作者: Lee, TH;Yen, CT;Hsu, SH
    貢獻者: Institute of Cellular and Systems Medicine
    摘要: Graphene, with excellent conductivity can promote the growth and differentiation of neural stem cells (NSCs), but the rigidity has limited its direct application in neural tissue engineering. In this study, waterborne biodegradable polyurethane (PU) was used as the matrix for the graphene nanocomposite materials to make graphene applicable to biocompatible scaffolds. The graphene sheets were observed on the surface of the composites which contained 5 wt % graphene (PU-G5). The nanocomposite retained the positive effect of graphene on cell behavior, while PU was flexible enough for further fabrication. Endothelial cells (ECs) and NSCs cocultured on the nanocomposite became more vascular-like and glial-like without induction culture medium. The specific vascular-related and neural-related gene markers, KDR, VE-Cadherin, and GFAP, were upregulated more than twice as the content of graphene increased (5 wt %). The fibrous capsule of the PU-G5 film group was about 38 μm in thickness in subcutaneous implantation, which was only half that of the graphene-free group. Nerve conduits made of the PU-graphene nanocomposite were found to promote the regeneration of the peripheral nerve in a rat sciatic nerve 10 mm gap transection model. In particular, the regenerated tissue in PU-G5 conduits showed an obvious response peak in the compound action potential (CAP) examination and had a similar CAP wave pattern to that of the normal sciatic nerve. However, such a response was not observed in the PU group. The nerve conduit made of PU-G5 had 72% and 50% enhancement on the numbers of axons and blood vessels of regenerated tissue, respectively. The regenerated area of nerve in PU-G5 was 25% larger than that in pristine PU. Compared with the U.S. Food and Drug Administration (FDA) approved conduit, Neurotube, the regenerated nerve in PU-G5 was 1.7 times more than that in Neurotube. In addition to the fast recovery rate, the ability to regenerate tissue with normal morphology is a significant finding of this study that may lead to clinical applications in the future. PU-graphene nanocomposites thus have potential applications in neural tissue engineering.
    日期: 2020-01
    關聯: ACS Biomaterials Science and Engineering. 2020 Jan;6(1):597-609.
    Link to: http://dx.doi.org/10.1021/acsbiomaterials.9b01473
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2373-9878&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000507429200053
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85076269814
    顯示於類別:[徐善慧] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85076269814.pdf1872KbAdobe PDF292檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋