國家衛生研究院 NHRI:Item 3990099045/12443
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 913327      Online Users : 1164
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    NHRI > NHRI Graduate Student Program > Others > Periodical Articles >  Item 3990099045/12443
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/12443


    Title: Efficient labeling of mesenchymal stem cells for high sensitivity long-term MRI monitoring in live mice brains
    Authors: Ali, AAA;Shahror, RA;Chen, KY
    Contributors: NHRI Graduate Student Program
    Abstract: Background: Regenerative medicine field is still lagging due to the lack of adequate knowledge regarding the homing of therapeutic cells towards disease sites, tracking of cells during treatment, and monitoring the biodistribution and fate of cells. Such necessities require labeling of cells with imaging agents that do not alter their biological characteristics, and development of suitable non-invasive imaging modalities. Purpose: We aimed to develop, characterize, and standardize a facile labeling strategy for engineered mesenchymal stem cells without altering their viability, secretion of FGF21 protein (neuroprotective), and differentiation capabilities for non-invasive longitudinal MRI monitoring in live mice brains with high sensitivity. Methods: We compared the labeling efficiency of different commercial iron oxide nanoparticles towards our stem cells and determined the optimum labeling conditions using prussian blue staining, confocal microscopy, transmission electron microscopy, and flow cytometry. To investigate any change in biological characteristics of labeled cells, we tested their viability by WST-1 assay, expression of FGF21 by Western blot, and adipogenic and osteogenic differentiation capabilities. MRI contrast-enhancing properties of labeled cells were investigated in vitro using cell-agarose phantoms and in mice brains transplanted with the therapeutic stem cells. Results: We determined the nanoparticles that showed best labeling efficiency and least extracellular aggregation. We further optimized their labeling conditions (nanoparticles concentration and media supplementation) to achieve high cellular uptake and minimal extracellular aggregation of nanoparticles. Cell viability, expression of FGF21 protein, and differentiation capabilities were not impeded by nanoparticles labeling. Low number of labeled cells produced strong MRI signal decay in phantoms and in live mice brains which were visible for 4 weeks post transplantation. Conclusion: We established a standardized magnetic nanoparticle labeling platform for stem cells that were monitored longitudinally with high sensitivity in mice brains using MRI for regenerative medicine applications.
    Date: 2020-01-08
    Relation: International Journal of Nanomedicine. 2020 Jan 8;15:97-114.
    Link to: http://dx.doi.org/10.2147/ijn.S211205
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1178-2013&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000506574400004
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85078297827
    Appears in Collections:[Others] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    ISI000506574400004.pdf13914KbAdobe PDF268View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback