English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 907590      Online Users : 970
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/12879


    Title: Semi-interpenetrating polymer network of hyaluronan and chitosan self-healing hydrogels for central nervous system repair
    Authors: Liu, Y;Hsu, YH;Huang, AP;Hsu, SH
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: The repair of the central nervous system (CNS) is a major challenge because of the difficulty for neurons or axons to regenerate after damages. Injectable hydrogels have been developed to deliver drugs or cells for neural repair, but these hydrogels usually require conditional stimuli or additional catalysts to control the gelling process. Self-healing hydrogels, which can be injected locally to fill tissue defects after stable gelation, are attractive candidates for CNS treatment. In the current study, the self-healing hydrogel with a semi-interpenetrating polymer network (SIPN) was prepared by incorporation of hyaluronan (HA) into the chitosan-based self-healing hydrogel. The addition of HA allowed the hydrogel to pass through a narrow needle much more easily. As the HA content increased, the hydrogel showed a more packed nanostructure and a more porous microstructure verified by coherent small-angle X-ray scattering and scanning electron microscopy. The unique structure of SIPN hydrogel enhanced the spreading, migration, proliferation, and differentiation of encapsulated neural stem cells in vitro. Compared to the pristine chitosan-based self-healing hydrogel, the SIPN hydrogel showed better biocompatibility, CNS injury repair, and functional recovery evaluated by the traumatic brain injury zebrafish model and intracerebral hemorrhage rat model. We proposed that the SIPN of HA and chitosan self-healing hydrogel allowed an adaptable environment for cell spreading and migration and had the potential as an injectable defect support for CNS repair.
    Date: 2020-08-29
    Relation: ACS Applied Materials and Interfaces. 2020 Aug 29;12(36):40108-40120.
    Link to: http://dx.doi.org/10.1021/acsami.0c11433
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1944-8244&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000571433500016
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85090870530
    Appears in Collections:[徐善慧] 期刊論文

    Files in This Item:

    File Description SizeFormat
    PUB32808527.pdf9801KbAdobe PDF295View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback