English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12500/13673 (91%)
造訪人次 : 2593555      線上人數 : 331
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12910


    題名: Development of hourly indoor PM2.5 concentration prediction model: The role of outdoor air, ventilation, building characteristic, and human activity
    作者: Jung, CC;Lin, WY;Hsu, NY;Wu, CD;Chang, HT;Su, HJ
    貢獻者: National Institute of Environmental Health Sciences
    摘要: Exposure to indoor particulate matter less than 2.5 µm in diameter (PM2.5 ) is a critical health risk factor. Therefore, measuring indoor PM2.5 concentrations is important for assessing their health risks and further investigating the sources and influential factors. However, installing monitoring instruments to collect indoor PM2.5 data is difficult and expensive. Therefore, several indoor PM2.5 concentration prediction models have been developed. However, these prediction models only assess the daily average PM2.5 concentrations in cold or temperate regions. The factors that influence PM2.5 concentration differ according to climatic conditions. In this study, we developed a prediction model for hourly indoor PM2.5 concentrations in Taiwan (tropical and subtropical region) by using a multiple linear regression model and investigated the impact factor. The sample comprised 93 study cases (1979 measurements) and 25 potential predictor variables. Cross-validation was performed to assess performance. The prediction model explained 74% of the variation, and outdoor PM2.5 concentrations, the difference between indoor and outdoor CO2 levels, building type, building floor level, bed sheet cleaning, bed sheet replacement, and mosquito coil burning were included in the prediction model. Cross-validation explained 75% of variation on average. The results also confirm that the prediction model can be used to estimate indoor PM2.5 concentrations across seasons and areas. In summary, we developed a prediction model of hourly indoor PM2.5 concentrations and suggested that outdoor PM2.5 concentrations, ventilation, building characteristics, and human activities should be considered. Moreover, it is important to consider outdoor air quality while occupants open or close windows or doors for regulating ventilation rate and human activities changing also can reduce indoor PM2.5 concentrations.
    日期: 2020-08-14
    關聯: International Journal of Environmental Research and Public Health. 2020 Aug 14;17(16):Article number 5906.
    Link to: http://dx.doi.org/10.3390/ijerph17165906
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000565131400001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85089625435
    顯示於類別:[其他] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85089625435.pdf2297KbAdobe PDF275檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋