國家衛生研究院 NHRI:Item 3990099045/12938
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 916727      線上人數 : 1516
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12938


    題名: Kriging-based land-use regression models that use machine learning algorithms to estimate the monthly BTEX concentration
    作者: Hsu, CY;Zeng, YT;Chen, YC;Chen, MJ;Lung, SCC;Wu, CD
    貢獻者: National Institute of Environmental Health Sciences
    摘要: This paper uses machine learning to refine a Land-use Regression (LUR) model and to estimate the spatial–temporal variation in BTEX concentrations in Kaohsiung, Taiwan. Using the Taiwanese Environmental Protection Agency (EPA) data of BTEX (benzene, toluene, ethylbenzene, and xylenes) concentrations from 2015 to 2018, which includes local emission sources as a result of Asian cultural characteristics, a new LUR model is developed. The 2019 data was then used as external data to verify the reliability of the model. We used hybrid Kriging-land-use regression (Hybrid Kriging-LUR) models, geographically weighted regression (GWR), and two machine learning algorithms—random forest (RF) and extreme gradient boosting (XGBoost)—for model development. Initially, the proposed Hybrid Kriging-LUR models explained each variation in BTEX from 37% to 52%. Using machine learning algorithms (XGBoost) increased the explanatory power of the models for each BTEX, between 61% and 79%. This study compared each combination of the Hybrid Kriging-LUR model and (i) GWR, (ii) RF, and (iii) XGBoost algorithm to estimate the spatiotemporal variation in BTEX concentration. It is shown that a combination of Hybrid Kriging-LUR and the XGBoost algorithm gives better performance than other integrated methods.
    日期: 2020-09-23
    關聯: International Journal of Environmental Research and Public Health. 2020 Sep 23;17(19):Article number 6956.
    Link to: http://dx.doi.org/10.3390/ijerph17196956
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000586476700001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85091388143
    顯示於類別:[陳裕政] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85091388143.pdf4633KbAdobe PDF261檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋