English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 908093      Online Users : 915
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/12981


    Title: Novel miRNA signature for predicting the stage of hepatocellular carcinoma
    Authors: Yerukala Sathipati, S;Ho, SY
    Contributors: Institute of Population Health Sciences
    Abstract: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide. Recently, microRNAs (miRNAs) are reported to be altered and act as potential biomarkers in various cancers. However, miRNA biomarkers for predicting the stage of HCC are limitedly discovered. Hence, we sought to identify a novel miRNA signature associated with cancer stage in HCC. We proposed a support vector machine (SVM)-based cancer stage prediction method, SVM-HCC, which uses an inheritable bi-objective combinatorial genetic algorithm for selecting a minimal set of miRNA biomarkers while maximizing the accuracy of predicting the early and advanced stages of HCC. SVM-HCC identified a 23-miRNA signature that is associated with cancer stages in patients with HCC and achieved a 10-fold cross-validation accuracy, sensitivity, specificity, Matthews correlation coefficient, and area under the receiver operating characteristic curve (AUC) of 92.59%, 0.98, 0.74, 0.80, and 0.86, respectively; and test accuracy and test AUC of 74.28% and 0.73, respectively. We prioritized the miRNAs in the signature based on their contributions to predictive performance, and validated the prognostic power of the prioritized miRNAs using Kaplan–Meier survival curves. The results showed that seven miRNAs were significantly associated with prognosis in HCC patients. Correlation analysis of the miRNA signature and its co-expressed miRNAs revealed that hsa-let-7i and its 13 co-expressed miRNAs are significantly involved in the hepatitis B pathway. In clinical practice, a prediction model using the identified 23-miRNA signature could be valuable for early-stage detection, and could also help to develop miRNA-based therapeutic strategies for HCC.
    Date: 2020-09-02
    Relation: Scientific Reports. 2020 Sep 02;10:Article number 14452.
    Link to: http://dx.doi.org/10.1038/s41598-020-71324-z
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2045-2322&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000608581400008
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85090080854
    Appears in Collections:[其他] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP85090080854.pdf2694KbAdobe PDF169View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback