國家衛生研究院 NHRI:Item 3990099045/12998
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 966135      線上人數 : 780
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/12998


    題名: 17 beta-estradiol induces temozolomide resistance through redox optimization in glioblastoma
    其他題名: 17 β-estradiol induces temozolomide resistance through redox optimization in glioblastoma
    作者: Lin, HY;Hsu, TI;Ko, CY
    貢獻者: NHRI Graduate Student Program
    摘要: Glioblastoma is the most fatal cancer of all brain tumors, and the standard treatment of glioblastoma patients is surgical tumor resection followed by radiotherapy and temozolomide (TMZ)‐mediated chemotherapy. According to the TCGA databases, female patients exhibit poorer prognosis compared with male patients, suggesting that the gender‐specific hormone plays an important role in glioblastoma malignancy. In addition to acting as a female sex hormone, 17β‐estradiol is an important neuro‐steroid for brain health, including learning and memory. Numerous studies indicate that 17β‐estradiol aggressively participates in the pathogenesis of endocrine‐related cancers, such as breast and prostate cancers. However, the role of 17β‐estradiol is studied poorly in glioblastoma which exhibits strong neurosteroidogenesis. In this study, we attempt to elucidate whether 17β‐estradiol is involved in acquired resistance of glioblastoma to TMZ. Herein, we found that the level of 17β‐estradiol is significantly increased in TMZ‐resistant glioblastoma. Moreover, 17β‐estradiol attenuated TMZ‐induced cell death in A172 and U87MG cells. To dissect mechanisms underlying 17β‐estradiol‐induced resistance, we investigated whether 17β‐estradiol affected TMZ‐induced DNA damage and ROS production. Particularly, 17β‐estradiol significantly attenuated TMZ‐induced ROS production and hydrogen peroxide accumulation without affecting DNA damage. Further, 17β‐estradiol obviously prevented TMZ‐induced mitochondria dysfunctions characterized by the elevation of mitochondrial ROS and the reduction of ATP production. In addition, 17β‐estradiol treatment increased expression of multiple anti‐oxidant proteins, including superoxide dismutase (SOD) 1, SOD2, catalase (CAT), glutathione reductase, and nuclear factor erythroid 2 like 2. In particular, 17β‐estradiol promoted degradation of hydrogen peroxide through activating CAT, not through glutathione‐ and redox‐in‐mediated catabolic pathways. Based on these findings, we conclude that 17β‐estradiol counteracts TMZ‐induced oxidative stress through enhancing mitochondrial activity and CAT, leading to TMZ resistance.
    日期: 2020-04
    關聯: FASEB Journal. 2020 Apr;34(S1):Abstract number 02188.
    Link to: http://dx.doi.org/10.1096/fasebj.2020.34.s1.02188
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0892-6638&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000546023104081
    顯示於類別:[其他] 會議論文/會議摘要

    文件中的檔案:

    沒有與此文件相關的檔案.



    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋