English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 904734      Online Users : 547
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/13151


    Title: Low molecular weight fucoidan inhibits hepatocarcinogenesis and nonalcoholic fatty liver disease in zebrafish via ASGR/STAT3/HNF4A signaling
    Authors: Wu, SY;Yang, WY;Cheng, CC;Lin, KH;Sampurna, BP;Chan, SM;Yuh, CH
    Contributors: Institute of Molecular and Genomic Medicine
    Abstract: BACKGROUND: Hepatocellular carcinoma ranks fourth in cancer-related mortality currently lacks effective therapeutics. Fucoidan is sulfated polysaccharide that is mainly found in brown seaweeds. In this study, we investigated the effects and mechanisms of low molecular weight fucoidan (i.e. oligo-fucoidan [OF]) preventing hepatocarcinogenesis. METHODS: We used [HBx,src], [HBx,src,p53(-/+) ], and [CD36] transgenic zebrafish liver cancer model treated with OF, and performed molecular and histopathological analysis. Transcriptomic and pathways analysis was performed. RESULTS: Decreased expression of lipogenic enzymes, fibrosis markers, and cell cycle/proliferation markers by OF in [HBx,src] and [HBx,src,p53(-/+) ] transgenic fish. Liver fibrosis was decreased as revealed by Sirius Red staining, and the liver cancer formation was eventually reduced by feeding OF. OF was also found to be capable of reducing lipid accumulation and cancer formation in non-B non-C Hepatocellular carcinoma (HCC) model in CD36 transgenic zebrafish. Whole-genome expression analysis showed that 661 genes were up-regulated, and 451 genes were downregulated by feeding OF. Upregulated genes were mostly found in protein transporter activity, and downregulated genes were enriched with response to extracellular stimulus and metal binding in gene ontology analysis. The driver gene was HNF4A revealed by NetworkAnalyst from OF differential regulated genes at various insults. OF is able to bind the asialoglycoprotein receptor (ASGR) in hepatoma cells, and increased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) in both hepatoma cells and [HBx,src,p53(-/+) ] transgenic fish liver cancer model. Using chromatin-immunoprecipitation, we found pSTAT3 could associate with the P1 promoter of HNF4A. Knockdown of either ASGR or HNF4A reversed OF mediated anti-cancer cell proliferation. CONCLUSIONS: Taken together, we provide evidence that OF exhibits the anti-HCC, anti-steatosis, and anti-fibrosis effect for liver in zebrafish models, and the anti-cancer potential of OF attributed to the binding to ASGR and activation of STAT3/HNF4A signaling. OF might be potentially valuable for the management of HCC.
    Date: 2020-12
    Relation: Clinical and Translational Medicine. 2020 Dec;10(8):Article number e252.
    Link to: http://dx.doi.org/10.1002/ctm2.252
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2001-1326&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000603671400032
    Appears in Collections:[喻秋華] 期刊論文

    Files in This Item:

    File Description SizeFormat
    PUB33377648.pdf10972KbAdobe PDF459View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback