English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12340/13512 (91%)
造訪人次 : 2254929      線上人數 : 227
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13154


    題名: L-Carnitine ameliorates congenital myopathy in a tropomyosin 3 de novo mutation transgenic zebrafish
    作者: Hsu, PJ;Wang, HD;Tseng, YC;Pan, SW;Sampurna, BP;Jong, YJ;Yuh, CH
    貢獻者: Institute of Molecular and Genomic Medicine
    摘要: Background: Congenital myopathy (CM) is a group of clinically and genetically heterogeneous muscle disorders, characterized by muscle weakness and hypotonia from birth. Currently, no definite treatment exists for CM. A de novo mutation in Tropomyosin 3-TPM3(E151G) was identified from a boy diagnosed with CM, previously TPM3(E151A) was reported to cause CM. However, the role of TPM3(E151G) in CM is unknown. Methods: Histopathological, swimming behavior, and muscle endurance were monitored in TPM3 wild-type and mutant transgenic fish, modelling CM. Gene expression profiling of muscle of the transgenic fish were studied through RNAseq, and mitochondria respiration was investigated. Results: While TPM3(WT) and TPM3(E151A) fish show normal appearance, amazingly a few TPM3(E151G) fish display either no tail, a crooked body in both F0 and F1 adults. Using histochemical staining for the muscle biopsy, we found TPM3(E151G) displays congenital fiber type disproportion and TPM3(E151A) resembles nemaline myopathy. TPM3(E151G) transgenic fish dramatically swimming slower than those in TPM3(WT) and TPM3(E151A) fish measured by DanioVision and T-maze, and exhibit weaker muscle endurance by swimming tunnel instrument. Interestingly, l-carnitine treatment on TPM3(E151G) transgenic larvae significantly improves the muscle endurance by restoring the basal respiration and ATP levels in mitochondria. With RNAseq transcriptomic analysis of the expression profiling from the muscle specimens, it surprisingly discloses large downregulation of genes involved in pathways of sodium, potassium, and calcium channels, which can be rescued by l-carnitine treatment, fatty acid metabolism was differentially dysregulated in TPM3(E151G) fish and rescued by l-carnitine treatment. Conclusions: These results demonstrate that TPM3(E151G) and TPM3(E151A) exhibit different pathogenicity, also have distinct gene regulatory profiles but the ion channels were downregulated in both mutants, and provides a potential mechanism of action of TPM3 pathophysiology. Our results shed a new light in the future development of potential treatment for TPM3-related CM.
    日期: 2021-01-12
    關聯: Journal of Biomedical Science. 2021 Jan 12;28:Article number 8.
    Link to: http://dx.doi.org/10.1186/s12929-020-00707-1
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1021-7770&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000609814500001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85099185407
    顯示於類別:[喻秋華] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85099185407.pdf16899KbAdobe PDF321檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋