國家衛生研究院 NHRI:Item 3990099045/13216
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 854824      在线人数 : 847
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13216


    题名: Preparation and in-vitro evaluation of Fe2O3-doped DP-bioglass in combination with 3D-printing and selective laser sintering process (3DP-SLS) for alveolar bone augmentation
    作者: Chi, CY;Chen, CY;Huang, JY;Kuan, CY;Lin, YY;Li, CH;Yang, CC;Lin, FH
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Severe periodontal disease can cause damage and atrophy of alveolar bone. Presently, Fe2O3-doped DP-bioglass (DPF-bioglass) was prepared and combined with a 3D-printing and selective laser sintering (3DP-SLS) process to prepare a porous scaffold for alveolar bone augmentation of dental implants. Addition of 2% Fe2O3 effectively lowered the melting point and darkened the color to absorb the laser energy and increased the sintering efficiency. X-ray diffraction, optical microscopy (OM), energy dispersive spectrophotometry, and differential thermal analysis were used to characterize the crystal structure, color/darkness, morphology, qualitative chemical composition, and thermal stability, respectively, for the synthesized DPF-bioglass. After the human fetal osteoblasts (hFOB 1.19 cells) were cultured with the extraction medium, cell morphology was observed by OM. The WST-1 and lactate dehydrogenase (LDH) assays were used to evaluate the cytotoxicity of the DPF-bioglass. This bioglass was then prepared as an alveolar bone substitute (ABS) by the 3DP-SLS process and cells were cultured on the scaffold. The cell morphology was revealed by scanning electron microscopy (SEM). Cell survival rate and cells in early apoptosis were examined using live/dead and JC-1 staining, respectively. The gene expression of Runx2, type I collagen, and alkaline phosphatase (ALP) were analyzed by qPCR to check early osteogenesis, extracellular matrix secretion, and mineralization, respectively. Xylenol orange (XO) staining was used to observe the mineralization of calcium phosphate deposition. The improvements in cell attachment, proliferation, and biomineralization were further confirmed in terms of potential bone regeneration in vitro. The developed ABS was not cytotoxic to human osteoblasts in the WST-1, LDH, live/dead and JC-1 stain. The developed ABS gradually degraded and constantly released Ca+2, PO4−3, Fe+3, and Si+4 in the physiological environment. SEM and XO staining revealed that the released ions promoted bone formation and mineralization. Osteogenesis was also enhanced, as judged by early induction of the gene expression.
    日期: 2021-05-01
    關聯: Ceramics International. 2021 May 1;47(9):2725-12734.
    Link to: http://dx.doi.org/10.1016/j.ceramint.2021.01.132
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0272-8842&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000632837900003
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85099647446
    显示于类别:[林峯輝] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85099647446.pdf6825KbAdobe PDF292检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈