國家衛生研究院 NHRI:Item 3990099045/13268
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 908656      Online Users : 1055
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/13268


    Title: A 10-year probability deep neural network prediction model for lung cancer
    Authors: Lee, HA;Chao, LR;Hsu, CY
    Contributors: National Institute of Cancer Research
    Abstract: Cancer is the leading cause of death in Taiwan. According to the Cancer Registration Report of Taiwan’s Ministry of Health and Welfare, a total of 13,488 people suffered from lung cancer in 2016, making it the second-most common cancer and the leading cancer in men. Compared with other types of cancer, the incidence of lung cancer is high. In this study, the National Health Insurance Research Database (NHIRDB) was used to determine the diseases and symptoms associated with lung cancer, and a 10-year probability deep neural network prediction model for lung cancer was developed. The proposed model could allow patients with a high risk of lung cancer to receive an earlier diagnosis and support the physicians’ clinical decision-making. The study was designed as a cohort study. The subjects were patients who were diagnosed with lung cancer between 2000 and 2009, and the patients’ disease histories were back-tracked for a period, extending to ten years before the diagnosis of lung cancer. As a result, a total of 13 diseases were selected as the predicting factors. A nine layers deep neural network model was created to predict the probability of lung cancer, depending on the different pre-diagnosed diseases, and to benefit the earlier detection of lung cancer in potential patients. The model is trained 1000 times, the batch size is set to 100, the SGD(Stochastic gradient descent) optimizer is used, the learning rate is set to 0.1, and the momentum is set to 0.1. The proposed model showed an accuracy of 85.4%, a sensitivity of 72.4% and a specificity of 85%, as well as an 87.4% area under ROC (AUROC) (95%, 0.8604–0.8885) model precision. Based on data analysis and deep learning, our prediction model discovered some features that had not been previously identified by clinical knowledge. This study tracks a decade of clinical diagnostic records to identify possible symptoms and comorbidities of lung cancer, allows early prediction of the disease, and assists more patients with early diagnosis.
    Date: 2021-02-23
    Relation: Cancers. 2021 Feb 23;13(4):Article number 928.
    Link to: http://dx.doi.org/10.3390/cancers13040928
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2072-6694&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000623357900001
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101351712
    Appears in Collections:[Others] Periodical Articles

    Files in This Item:

    File SizeFormat
    PUB33672275.pdf2398KbAdobe PDF224View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback