國家衛生研究院 NHRI:Item 3990099045/1326
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 967838      線上人數 : 784
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/1326


    題名: Influence of intron and exon splicing enhancers on mammalian cell expression of a truncated spike protein of SARS-CoV and its implication for subunit vaccine development
    作者: Chang, CY;Hong, WWL;Chong, PL;Wu, SC
    貢獻者: Vaccine Research and Development Center
    摘要: The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is important for vaccine development. A truncated S protein of the TW1 strain, S-TR2 (88 kDa), carrying three S fragments (S74-253, S294-739, and S1129-1255) was investigated to study the influences of intron and exon splicing enhancers to improve S-TR2 protein expression in mammalian cells. Our results showed that STR2 protein expression with the use of an 138 base-pair intron addition increased by 1.9-, 2.5-, and 4.1-fold in Vero E6, QBI-293A cells, and CHO/dhFr- cells (dihydrofolate reductase [dhfr] gene deficient CHO cells), respectively. Using the exon splicing enhancers, including a bidirectional splicing enhancer (BSE) or an exon splicing enhancer derived from the EDA alternative exon of the fibronectin gene (EDA ESE), were also found to increase STR2 protein expression in CHO/dhFr- cells by 1.7- and 2.6-fold. Nevertheless, combination of the intron and the exon splicing enhancers resulted in suppressing the intron-enhancing e STR2 protein expression in in CHO/dhFr- cells. Our studies also demonstrated the STR2 protein was mainly as the Endo H-sensitive glycoprotein (115 kDa) expressed in Vero E6, QBI-293A, and CHO/dhFr-cells. However, only a minor form of the Endo H-resistant glycoproteins (similar to 130 kDa) was detected in CHO/dhFr- cells. Taken together, our results indicated that intron had a better enhancing effect on STR2 protein expression than exon splicing enhancers, and the expression of similar to 130 kDa S-TR2 glycoprotein was enhanced by the intron addition into the expression vector construct. Results of the present study can provide an optimal strategy to enhance SARS-CoV S protein expression in mammalian cells and may contribute to the development of SARS-CoV subunit vaccine. (c) 2005 Elsevier Ltd. All rights reserved.
    關鍵詞: Immunology;Medicine, Research & Experimental;Veterinary Sciences
    日期: 2006-02-20
    關聯: Vaccine. 2006 Feb;24(8):1132-1141.
    Link to: http://dx.doi.org/10.1016/j.vaccine.2005.09.011
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0264-410X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000235647900011
    Cited Times(Scopus): http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=32044439096
    顯示於類別:[莊再成] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    000235647900011.pdf437KbAdobe PDF677檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋