English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 908440      Online Users : 995
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/13511


    Title: Variant-specific inflation factors for assessing population stratification at the phenotypic variance level
    Authors: Sofer, T;Zheng, X;Laurie, CA;Gogarten, SM;Brody, JA;Conomos, MP;Bis, JC;Thornton, TA;Szpiro, A;O’Connell, JR;Lange, EM;Gao, Y;Cupples, LA;Psaty, BM;Abe, N;Abecasis, G;Aguet, F;Albert, C;Almasy, L;Alonso, A;Ament, S;Anderson, P;Anugu, P;Applebaum-Bowden, D;Ardlie, K;Arking, D;Arnett, DK;Ashley-Koch, A;Aslibekyan, S;Assimes, T;Auer, P;Avramopoulos, D;Ayas, N;Balasubramanian, A;Barnard, J;Barnes, K;Barr, RG;Barron-Casella, E;Barwick, L;Beaty, T;Beck, G;Becker, D;Becker, L;Beer, R;Beitelshees, A;Benjamin, E;Benos, T;Bezerra, M;Bielak, L;Bis, J;Blackwell, T;Blangero, J;Boerwinkle, E;Bowden, DW;Bowler, R;Brody, J;Broeckel, U;Broome, J;Brown, D;Bunting, K;Burchard, E;Bustamante, C;Buth, E;Cade, B;Cardwell, J;Carey, V;Carrier, J;Carty, C;Casaburi, R;Romero, JPC;Casella, J;Castaldi, P;Chaffin, M;Chang, C;Chang, YC;Chasman, D;Chavan, S;Chen, BJ;Chen, WM;Chen, YDI;Cho, M;Choi, SH;Chuang, LM;Chung, M;Chung, RH;Clish, C;Comhair, S;Conomos, M;Cornell, E;Correa, A;Crandall, C;Crapo, J;Cupples, LA;Curran, J;Curtis, J;Custer, B;Damcott, C;Darbar, D;David, S;Davis, C;et al.
    Contributors: Institute of Population Health Sciences
    Abstract: In modern Whole Genome Sequencing (WGS) epidemiological studies, participant-level data from multiple studies are often pooled and results are obtained from a single analysis. We consider the impact of differential phenotype variances by study, which we term ‘variance stratification’. Unaccounted for, variance stratification can lead to both decreased statistical power, and increased false positives rates, depending on how allele frequencies, sample sizes, and phenotypic variances vary across the studies that are pooled. We develop a procedure to compute variant-specific inflation factors, and show how it can be used for diagnosis of genetic association analyses on pooled individual level data from multiple studies. We describe a WGS-appropriate analysis approach, implemented in freely-available software, which allows study-specific variances and thereby improves performance in practice. We illustrate the variance stratification problem, its solutions, and the proposed diagnostic procedure, in simulations and in data from the Trans-Omics for Precision Medicine Whole Genome Sequencing Program (TOPMed), used in association tests for hemoglobin concentrations and BMI.
    Date: 2021-06-09
    Relation: Nature Communications. 2021 Jun 9;12:Article number 3506.
    Link to: http://dx.doi.org/10.1038/s41467-021-23655-2
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2041-1723&DestApp=IC2JCR
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107746519
    Appears in Collections:[鍾仁華] 期刊論文
    [熊昭] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP85107746519.pdf1348KbAdobe PDF201View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback