English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 905016      Online Users : 796
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/13514


    Title: The potential of adoptive transfer of gamma9delta2 T cells to enhance blinatumomab’s antitumor activity against B-cell malignancy
    Other Titles: The potential of adoptive transfer of γ9δ2 T cells to enhance blinatumomab’s antitumor activity against B-cell malignancy
    Authors: Chen, YH;Wang, Y;Liao, CH;Hsu, SC
    Contributors: Center for Neuropsychiatric Research;National Institute of Infectious Diseases and Vaccinology
    Abstract: Blinatumomab, a bispecific T cell engager (BiTE) antibody targeting CD19 and CD3ε, can redirect T cells toward CD19-positive tumor cells and has been approved to treat relapsed/refractory B-cell acute lymphoblastic leukemia (R/R B-ALL). However, chemotherapeutic regimens can severely reduce T cells’ number and cytotoxic function, leading to an inadequate response to blinatumomab treatment in patients. In addition, it was reported that a substantial portion of R/R B-ALL patients failing blinatumomab treatment had the extramedullary disease, indicating the poor ability of blinatumomab in treating extramedullary disease. In this study, we investigated whether the adoptive transfer of ex vivo expanded γ9δ2 T cells could act as the effector of blinatumomab to enhance blinatumomab’s antitumor activity against B-cell malignancies in vivo. Repeated infusion of blinatumomab and human γ9δ2 T cells led to more prolonged survival than that of blinatumomab or human γ9δ2 T cells alone in the mice xenografted with Raji cells. Furthermore, adoptive transfer of γ9δ2 T cells reduced tumor mass outside the bone marrow, indicating the potential of γ9δ2 T cells to eradicate the extramedullary disease. Our results suggest that the addition of γ9δ2 T cells to the blinatumomab treatment regimens could be an effective approach to enhancing blinatumomab’s therapeutic efficacy. The concept of this strategy may also be applied to other antigen-specific BiTE therapies for other malignancies.
    Date: 2021-06-11
    Relation: Scientific Reports. 2021 Jun 11;11:Article number 12398.
    Link to: http://dx.doi.org/10.1038/s41598-021-91784-1
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2045-2322&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000663778500019
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107810469
    Appears in Collections:[王昀] 期刊論文
    [許素菁] 期刊論文

    Files in This Item:

    File Description SizeFormat
    SCP85107810469.pdf8192KbAdobe PDF259View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback