Loading...
|
Please use this identifier to cite or link to this item:
http://ir.nhri.org.tw/handle/3990099045/13516
|
Title: | Associations of ambient air pollution with overnight changes in body composition and sleep-related parameters |
Authors: | Tung, NT;Lee, YL;Lin, SY;Wu, CD;Dung, HB;Thuy, TPC;Kuan, YC;Tsai, CY;Lo, CC;Lo, K;Ho, KF;Liu, WT;Chuang, HC |
Contributors: | National Institute of Environmental Health Sciences |
Abstract: | This study aims to investigate the association of air pollution with overnight change in 4body composition and sleep-related parameters. Body composition of 197 subjects in New Taipei city was measured before and after sleep by bioelectric impedance analysis. Air pollutant data were collected from Taiwan Environmental Protection Administration. Sleep parameters were examined by polysomnography. We observed fine particulate matter (PM2.5) decreased arterial oxygen saturation (SaO2) and increased apnea-hypopnea index (AHI); NO2 increased arousal, AHI, and decreased mean SaO2; and O3 inmcreased mean SaO2. We observed 0.99-μg/m3 increase in PM2.5 was associated with 18.8% increase in changes of right arm fat percentage (95% confidence interval (CI): 0.004, 0.375) and 0.011-kg increase in changes of right arm fat mass (95% CI: 0.000, 0.021). 2.45-ppb increase in NO2 was associated with 0.181-kg decrease in changes of muscle mass (95% CI: −0.147, −0.001), 0.192-kg decrease in changes of fat free mass (95% CI: −0.155, −0.001), 21.1% increase in changes of right leg fat percentage (95% CI: 0.012, 0.160), and 21.3% increase in changes of left leg fat percentage (95% CI: 0.006, 0.168). 1.56-ppb increase in O3 was associated with 29.3% decrease in changes of right leg fat percentage (95% CI: −0.363, −0.013), 0.058-kg increase in changes of right leg fat free mass (95% CI: 0.008, 0.066), and 0.059-kg increase in changes of right leg muscle mass (95% CI: 0.010, 0.066). We observed AHI was associated with overnight changes in fat percentage, total fat mass, muscle mass, bone mass, fat free mass, extracellular water, basal metabolic rate, leg fat percentage, leg fat mass, and trunk fat percentage (p < 0.05). In conclusion, exposure to air pollutants was associated with overnight body composition changes and sleep-related parameters. Nocturnal changes in total muscle mass and leg fat percentage likely contribute to the relationship between air pollution and obstructive sleep apnea. |
Date: | 2021-10-15 |
Relation: | Science of the Total Environment. 2021 Oct 15;791:Article number 148265. |
Link to: | http://dx.doi.org/10.1016/j.scitotenv.2021.148265 |
JIF/Ranking 2023: | http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0048-9697&DestApp=IC2JCR |
Cited Times(WOS): | https://www.webofscience.com/wos/woscc/full-record/WOS:000686014900004 |
Cited Times(Scopus): | https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85107660030 |
Appears in Collections: | [其他] 期刊論文
|
Files in This Item:
File |
Description |
Size | Format | |
SCP85107660030.pdf | | 462Kb | Adobe PDF | 190 | View/Open |
|
All items in NHRI are protected by copyright, with all rights reserved.
|