國家衛生研究院 NHRI:Item 3990099045/13552
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 854785      線上人數 : 808
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13552


    題名: The effect of heat treatment toward glycerol-based, photocurable polymeric scaffold: Mechanical, degradation and biocompatibility
    作者: Ao-Ieong, WS;Chien, ST;Jiang, WC;Yet, SF;Wang, JN
    貢獻者: Institute of Cellular and Systems Medicine
    摘要: Photocurable polymers have become increasingly important for their quick prototyping and high accuracy when used in three dimensional (3D) printing. However, some of the common photocurable polymers are known to be brittle, cytotoxic and present low impact resistance, all of which limit their applications in medicine. In this study, thermal treatment was studied for its effect and potential applications on the mechanical properties, degradability and biocompatibility of glycerol-based photocurable polymers, poly(glycerol sebacate) acrylate (PGSA). In addition to the slight increase in elongation at break, a two-fold increase in both Young's modulus and ultimate tensile strength were also observed after thermal treatment for the production of thermally treated PGSA (tPGSA). Moreover, the degradation rate of tPGSA significantly decreased due to the increase in crosslinking density in thermal treatment. The significant increase in cell viability and metabolic activity on both flat films and 3D-printed scaffolds via digital light processing-additive manufacturing (DLP-AM) demonstrated high in vitro biocompatibility of tPGSA. The histological studies and immune staining indicated that tPGSA elicited minimum immune responses. In addition, while many scaffolds suffer from instability through sterilization processes, it was proven that once glycerol-based polymers have been treated thermally, the influence of autoclaving the scaffolds were minimized. Therefore, thermal treatment is considered an effective method for the overall enhancement and stabilization of photocurable glycerol-based polymeric scaffolds in medicine-related applications.
    日期: 2021-06-14
    關聯: Polymers. 2021 Jun 14;13(12):Article number 1960.
    Link to: http://dx.doi.org/10.3390/polym13121960
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2073-4360&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000666357100001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85108823737
    顯示於類別:[林秀芳] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    ISI000666357100001.pdf3867KbAdobe PDF207檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋