Excess nutrient uptake is one of the main factors of complications related to metabolism disorders. Therefore, efforts have emerged to modulate nutrient transport in the intestine. However, current approaches are mainly invasive interventions with various side effects. Here, a pH-responsive hydrogel is formulated by acidifying the hydroxide compounds within sucralfate to allow electrostatic interactions between pectin and aluminum ions. The pH responsiveness relies on the alternation of cations and hydroxide species, providing reversible shifting from a hydrogel to a complex coacervate system. It acts as a transient physical barrier coating to inhibit intestinal absorption and changes the viscosity and barrier function in different parts of the gastrointestinal tract, showing enhanced mucoadhesive properties. The therapeutic hydrogel remarkably lowers the immediate blood glucose response by modulating nutrient contact with bowel mucosa, suggesting potential in treating diabetes. In addition, it significantly reduces weight gain, fat accumulation, and hepatic lipid deposition in rodent models. This study provides a novel strategy for fabricating pH-responsive hydrogels, which may serve as a competent candidate for metabolism disorder management.
Date:
2021-12-06
Relation:
ACS Applied Materials and Interfaces. 2021 Dec 6;13(49):58340-58351.