國家衛生研究院 NHRI:Item 3990099045/13989
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 908967      在线人数 : 977
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/13989


    题名: Epigenomic signatures on paralogous genes reveal underappreciated universality of active histone codes adopted across animals
    作者: Lan, KY;Liao, BY
    贡献者: Institute of Population Health Sciences
    摘要: The results of conventional gene-based analyses which combine epigenome and transcriptome data, including those conducted by the ENCODE/modENCODE projects, suggest various histone modifications performing regulatory functions in controlling mRNA expression (referred to as a histone code) in several model animals. While some histone codes were found to be universally adopted across organisms, “species-specific” histone codes have also been defined. We found that the characterization of these histone codes was confounded by factors (e.g. gene essentiality, expression breadth) that are independent of, but correlated with, gene expression levels. Hence, we attempted to decode histone marks in mouse (Mus musculus), fly (Drosophila melanogaster), and worm (Caenorhabditis elegans) genomes by examining ratios of RNA sequencing (and chromatin immunoprecipitation sequencing) intensities between paralog genes to remove confounding effects that would otherwise be present in a gene-based approach. With this paralog-based approach, associations between four histone modifications (H3K4me3, H3K27ac, H3K9ac, and H3K36me3) and gene expression are substantially revised. For example, we demonstrate that H3K27ac and H3K9ac represent universal active marks in promoters, rather than worm-specific marks as previously reported. Second, acting regions of the studied active marks that are common across species (and across a wide range of tissues at different developmental stages) were found to extend beyond the previously defined regions. Thus, it appears that the active histone codes analyzed have a universality that has previously been underappreciated. Our results suggested that these universal codes, including those previously considered species-specific, could have an ancient origin, and are important in regulating animal gene expression abundance.
    日期: 2022-01
    關聯: Computational and Structural Biotechnology Journal. 2022 Jan;20:353-367.
    Link to: http://dx.doi.org/10.1016/j.csbj.2021.12.027
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2001-0370&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000819903300006
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85122354792
    显示于类别:[廖本揚] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85122354792.pdf1915KbAdobe PDF155检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈