國家衛生研究院 NHRI:Item 3990099045/14067
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 909768      在线人数 : 859
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14067


    题名: An IoT-based smart system with an MQTT broker for individual patient vital sign monitoring in potential emergency or prehospital applications
    作者: Tsao, YC;Cheng, FJ;Li, YH;Liao, LD
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Emergency care is a critical area of medicine whose outcomes are influenced by the time, availability, and accuracy of contextual information. The success of critical or emergency care is determined by the quality and accuracy of the information received during the emergency call and the data collected during emergency transportation. The Internet of Things (IoT) consists of many smart devices and components that communicate via their connection to the Internet, which is used to collect data with sensors that obtain personal health parameters. In the past, most health measurement systems were based on a single dedicated orientation, and few systems had multiple devices on the same platform. In addition to traditional health measurement technologies, most such systems use centralized data transmission, which means that health measurement data have become the exclusive intellectual asset of the system developer. Therefore, this study develops an IoT-based message-broker system that is deployed and demonstrated for five health devices: blood oxygen, blood pressure, forehead temperature, body temperature, and body weight sensors. A central controller accessed by radio-frequency identification (RFID) collects clients' health profiles on the cloud platform. All collected data can be quickly shared, analyzed, and visualized, and the health devices can be changed, added to, and removed reliably when the requirements change. Additionally, following the message queuing telemetry transport (MQTT) protocol, all devices can communicate with each other and be integrated into a higher-level health measurement standard (such as blood pressure plus weight or body temperature plus blood oxygen). We implement a smart healthcare monitoring system (SHMS) and verify its reliability. We use MQTT to establish an open communication format that other organizations can follow to perform individual patient vital sign monitoring in potential applications. The robustness and flexibility of this research can be verified through the addition of other systems. Through this structure, more large-scale health detection devices can be integrated into the method proposed in this research in the future. Personal RFID or health insurance cards can be used for personal services or in medical institutions, and the data can easily be shared through the mechanism of this research. Such information sharing will enable the utilization of medical resources to be maximized.
    日期: 2022-01-29
    關聯: Emergency Medicine International. 2022 Jan 29;2022:Article number 7245650.
    Link to: http://dx.doi.org/10.1155/2022/7245650
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2090-2840&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000769428500001
    显示于类别:[廖倫德] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    PUB35132364.pdf5704KbAdobe PDF350检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈