國家衛生研究院 NHRI:Item 3990099045/14293
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 854248      在线人数 : 1375
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14293


    题名: A mixed spatial prediction model in estimating spatiotemporal variations in benzene concentrations in Taiwan
    作者: Hsu, CY;Xie, HX;Wong, PY;Chen, YC;Chen, PC;Wu, CD
    贡献者: National Institute of Environmental Health Sciences
    摘要: It is well known benzene negatively impacts human health. This study is the first to predict spatial-temporal variations in benzene concentrations for the entirety of Taiwan by using a mixed spatial prediction model integrating multiple machine learning algorithms and predictor variables selected by Land-use Regression (LUR). Monthly benzene concentrations from 2003 to 2019 were utilized for model development, and monthly benzene concentration data from 2020, as well as mobile monitoring vehicle data from 2009 to 2019, served as external data for verifying model reliability. Benzene concentrations were estimated by running six LUR-based machine learning algorithms; these algorithms, which include random forest (RF), deep neural network (DNN), gradient boosting (GBoost), light gradient boosting (LightGBM), CatBoost, extreme gradient boosting (XGBoost), and ensemble algorithms (a combination of the three best performing models), can capture how nonlinear observations and predictions are related. The results indicated conventional LUR captured 79% of the variability in benzene concentrations. Notably, the LUR with ensemble algorithm (GBoost, CatBoost, and XGBoost) surpassed all other integrated methods, increasing the explanatory power to 92%. This study establishes the value of the proposed ensemble-based model for estimating spatiotemporal variation in benzene exposure.
    日期: 2022-08
    關聯: Chemosphere. 2022 Aug;301:Article number 134758.
    Link to: http://dx.doi.org/10.1016/j.chemosphere.2022.134758
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0045-6535&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000799290800005
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85129309668
    显示于类别:[陳保中] 期刊論文
    [陳裕政] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85129309668.pdf5598KbAdobe PDF168检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈