國家衛生研究院 NHRI:Item 3990099045/14304
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 909270      在线人数 : 800
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14304


    题名: Image collection and annotation platforms to establish a multi-source database of oral lesions
    作者: Rajendran, S;Lim, JH;Yogalingam, K;Kallarakkal, TG;Zain, RB;Jayasinghe, RD;Rimal, J;Kerr, AR;Amtha, R;Patil, K;Welikala, RA;Lim, YZ;Remagnino, P;Gibson, J;Tilakaratne, WM;Liew, CS;Yang, YH;Barman, SA;Chan, CS;Cheong, SC
    贡献者: National Institute of Cancer Research
    摘要: Objective: To describe the development of a platform for image collection and annotation that resulted in a multi-sourced international image dataset of oral lesions to facilitate the development of automated lesion classification algorithms. Materials and Methods: We developed a web-interface, hosted on a web server to collect oral lesions images from international partners. Further, we developed a customised annotation tool, also a web-interface for systematic annotation of images to build a rich clinically labelled dataset. We evaluated the sensitivities comparing referral decisions through the annotation process with the clinical diagnosis of the lesions. Results: The image repository hosts 2474 images of oral lesions consisting of oral cancer, oral potentially malignant disorders and other oral lesions that were collected through MeMoSA (R) UPLOAD. Eight-hundred images were annotated by seven oral medicine specialists on MeMoSA (R) ANNOTATE, to mark the lesion and to collect clinical labels. The sensitivity in referral decision for all lesions that required a referral for cancer management/surveillance was moderate to high depending on the type of lesion (64.3%-100%). Conclusion: This is the first description of a database with clinically labelled oral lesions. This database could accelerate the improvement of AI algorithms that can promote the early detection of high-risk oral lesions.
    日期: 2023-07
    關聯: Oral Diseases. 2023 Jul;29(5):2230-2238.
    Link to: http://dx.doi.org/10.1111/odi.14206
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1354-523X&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000787105400001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85128858943
    显示于类别:[楊奕馨] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    ISI000787105400001.pdf1182KbAdobe PDF188检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈