English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12500/13673 (91%)
Visitors : 2483329      Online Users : 133
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/14333


    Title: Human IL12p80 promotes murine oligodendrocyte differentiation to repair nerve injury
    Authors: Chung, YF;Chen, JH;Li, CW;Hsu, HY;Chen, YP;Wang, CC;Chiu, IM
    Contributors: Institute of Cellular and Systems Medicine
    Abstract: Nerve injury of the central nervous system and the peripheral nervous system still poses a major challenge in modern clinics. Understanding the roles of neurotrophic factors and their molecular mechanisms on neuro-regeneration will not only benefit patients with neural damage but could potentially treat neurodegenerative disorders, such as amyotrophic lateral sclerosis. In this study, we showed that human IL12 p40-p40 homodimer (hIL12p80) within PLA and PLGA conduits improved sciatic nerve regeneration in mice. As such, the group of conduits with NSCs and hIL12p80 (CNI) showed the best recovery among the groups in the sciatic functional index (SFI), compound muscle action potential (CMAP), and Rotarod performance analyses. In addition, the CNI group had a faster recovery and outperformed the other groups in SFI and Rotarod performance tests beginning in the fourth week post-surgery. Immunohistochemistry showed that the CNI group increased the diameter of the newly regenerated nerve by two-fold (p < 0.01). In vitro studies showed that hIL12p80 stimulated differentiation of mouse NSCs to oligodendrocyte lineages through phosphorylation of Stat3 at Y705 and S727. Furthermore, implantation using PLGA conduits (C2.0 and C2.1) showed better recovery in the Rotarod test and CMAP than using PLA conduits in FVB mice. In B6 mice, the group with C2.1 + NSCs + hIL12p80 (C2.1NI) not only promoted sciatic functional recovery but also reduced the rate of experimental autotomy. These results suggested that hIL12p80, combined with NSCs, enhanced the functional recovery and accelerated the regeneration of damaged nerves in the sciatic nerve injury mice. Our findings could further shed light on IL12′s application not only in damaged nerves but also in rectifying the oligodendrocytes’ defects in neurodegenerative diseases, such as amyotrophic lateral sclerosis and multiple sclerosis.
    Date: 2022-06-23
    Relation: International Journal of Molecular Sciences. 2022 Jun 23;23(13):Article number 7002.
    Link to: http://dx.doi.org/10.3390/ijms23137002
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1422-0067&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000824049300001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85132365655
    Appears in Collections:[邱英明] 期刊論文

    Files in This Item:

    File Description SizeFormat
    NCS2022070401.pdf3539KbAdobe PDF209View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback