國家衛生研究院 NHRI:Item 3990099045/14359
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 853491      在线人数 : 968
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14359


    题名: An alternative approach for estimating large-area indoor PM2.5 concentration – A case study of schools
    作者: Wong, PY;Lee, HY;Chen, LJ;Chen, YC;Chen, NT;Lung, SCC;Su, HJ;Wu, CD;Laurent, JGC;Adamkiewicz, G;Spengler, JD
    贡献者: National Institute of Environmental Health Sciences
    摘要: Background: For indoor air modelling, difficulties in collecting indoor parameters including life activity patterns and building characteristics are dilemmas when conducting a large-area study. Land-use/land cover information which is easier to obtain could represent as surrogates of emission sources for assessing indoor air quality. Moreover, low-cost sensors and machine learning provide a better way to enhance model accuracy. Objectives: This study proposed an alternative estimation approach to assess daily PM2.5 concentration for indoor environments of schools in a large area by integrating low-cost sensors, land-use/land cover predictors, and machine learning-based modelling approaches. Methods: Indoor PM2.5 data was collected from 145 indoor AirBox sensors in Kaohsiung and Pingtung Counties of Taiwan. Geospatial predictors were extracted from the circular buffers surrounding each AirBox sensor. Spearman correlation analysis and stepwise variable selection procedures were performed to select variables for land-use regression (LUR) and integrated with XGBoost, Random Forest (RF), and LGBM machine learning models. Results: The results revealed that outdoor PM2.5 and distance to the nearest thermal power plant were the main determinants of indoor estimation variations, when there were no indoor sources. When incorporating machine learning, the R2 increased from 0.59 for LUR to 0.85 for LUR-XGBoost while the RMSE decreased from 8.63 to 5.27 μg/m3, which performed better than both LUR-RF and LUR-LGBM. Conclusions: This study demonstrates the value of the proposed alternative approach by incorporating data from a low-cost sensor with LUR model and machine learning algorithm in estimating the spatiotemporal variability of indoor PM2.5 for a large area.
    日期: 2022-07-01
    關聯: Building and Environment. 2022 Jul 1;219:Article number 109249.
    Link to: http://dx.doi.org/10.1016/j.buildenv.2022.109249
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0360-1323&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000884034800005
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85131385885
    显示于类别:[陳裕政] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85131385885.pdf6159KbAdobe PDF154检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈