國家衛生研究院 NHRI:Item 3990099045/14377
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12189/12972 (94%)
造訪人次 : 955759      線上人數 : 810
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14377


    題名: GPU-accelerated study of the inertial cavitation threshold in viscoelastic soft tissue using a dual-frequency driving signal
    作者: Filonets, T;Solovchuk, M
    貢獻者: Institute of Biomedical Engineering and Nanomedicine
    摘要: Inertial cavitation thresholds under two forms of ultrasonic excitation (the single- and dual-frequency ultrasound modes) are studied numerically. The Gilmore-Akulichev model coupled with the Zener viscoelastic model is used to model the bubble dynamics. The threshold pressures are determined with two criteria, one based on the bubble radius and the other on the bubble collapse speed. The threshold behavior is investigated for different initial bubble sizes, acoustic signal modes, frequencies, tissue viscosities, tissue elasticities, and all their combinations. Due to the large number of parameters and their many combinations (around 1.5 billion for each threshold criterion), all simulations were executed on graphics processing units to speed up the calculations. We used our own code written in the C++ and CUDA C languages. The results obtained demonstrate that using the dual-frequency signal mode can help to reduce the inertial cavitation threshold (in comparison to the single-frequency mode). The criterion based on the bubble size gives a lower threshold than the criterion using the bubble collapse speed. With an increase of the elasticity, the threshold pressure also increases, whereas changing the viscosity has a very small impact on the optimal threshold, unlike the elasticity. A detailed analysis of the optimal ultrasound frequencies for a dual-frequency driving signal found that for viscosities less than 0.02 Pa·s, the first optimal frequency, in general, is much smaller than the second optimal frequency, which can reach 1 MHz. However, for high viscosities, both optimal frequencies are similar and varied in the range 0.01-0.05 MHz. Overall, this study presents a detailed analysis of inertial cavitation in soft tissue under dual-frequency signal excitation. It may be helpful for the further development of different applications of biomedical ultrasound.
    日期: 2022-08
    關聯: Ultrasonics Sonochemistry. 2022 Aug;88:Article number 106056.
    Link to: http://dx.doi.org/10.1016/j.ultsonch.2022.106056
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1350-4177&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000829491800001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85133288839
    顯示於類別:[馬克沁] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    PUB35728380.pdf4056KbAdobe PDF231檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋