國家衛生研究院 NHRI:Item 3990099045/14444
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 906661      在线人数 : 946
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14444


    题名: SH3GLB1-related autophagy mediates mitochondrial metabolism to acquire resistance against temozolomide in glioblastoma
    作者: Chien, CH;Yang, WB;Chuang, JY;Lee, JS;Liao, WA;Huang, CY;Chen, PY;Wu, AC;Yang, ST;Lai, CC;Chi, PI;Chu, JM;Cheng, SM;Liu, CC;Hwang, DY;Chen, SH;Chang, KY
    贡献者: National Institute of Cancer Research
    摘要: Background The mechanism by which glioblastoma evades temozolomide (TMZ)-induced cytotoxicity is largely unknown. We hypothesized that mitochondria plays a role in this process. Methods RNA transcriptomes were obtained from tumor samples and online databases. Expression of different proteins was manipulated using RNA interference or gene amplification. Autophagic activity and mitochondrial metabolism was assessed in vitro using the respective cellular and molecular assays. In vivo analysis were also carried out in this study. Results High SH3GLB1 gene expression was found to be associated with higher disease grading and worse survival profiles. Single-cell transcriptome analysis of clinical samples suggested that SH3GLB1 and the altered gene levels of oxidative phosphorylation (OXPHOS) were related to subsets expressing a tumor-initiating cell signature. The SH3GLB1 protein was regulated by promoter binding with Sp1, a factor associated with TMZ resistance. Downregulation of SH3GLB1 resulted in retention of TMZ susceptibility, upregulated p62, and reduced LC3B-II. Autophagy inhibition by SH3GLB1 deficiency and chloroquine resulted in attenuated OXPHOS expression. Inhibition of SH3GLB1 in resistant cells resulted in alleviation of TMZ-enhanced mitochondrial metabolic function, such as mitochondrial membrane potential, mitochondrial respiration, and ATP production. SH3GLB1 modulation could determine tumor susceptibility to TMZ. Finally, in animal models, resistant tumor cells with SH3GLB1 knockdown became resensitized to the anti-tumor effect of TMZ, including the suppression of TMZ-induced autophagy and OXPHOS. Conclusions SH3GLB1 promotes TMZ resistance via autophagy to alter mitochondrial function. Characterizing SH3GLB1 in glioblastoma may help develop new therapeutic strategies against this disease in the future.
    日期: 2022-07-13
    關聯: Journal of Experimental and Clinical Cancer Research. 2022 Jul 13;41:Article number 220.
    Link to: http://dx.doi.org/10.1186/s13046-022-02429-8
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1756-9966&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000824620000001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85133998864
    显示于类别:[張光裕] 期刊論文
    [陳尚鴻] 期刊論文
    [黃道揚] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    ISI000824620000001.pdf6883KbAdobe PDF144检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈