國家衛生研究院 NHRI:Item 3990099045/14482
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 857836      線上人數 : 840
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14482


    題名: Artificial intelligence-enabled model for early detection of left ventricular hypertrophy and mortality prediction in young to middle-aged adults
    作者: Liu, CM;Hsieh, ME;Hu, YF;Wei, TY;Wu, IC;Chen, PF;Lin, YJ;Higa, S;Yagi, N;Chen, SA;Tseng, VS
    貢獻者: Institute of Population Health Sciences
    摘要: Background: Concealed left ventricular hypertrophy (LVH) is a prevalent condition that is correlated with a substantial risk of cardiovascular events and mortality, especially in young to middle-aged adults. Early identification of LVH is warranted. In this work, we aimed to develop an artificial intelligence (AI)-enabled model for early detection and risk stratification of LVH using 12-lead ECGs. Methods: By deep learning techniques on the ECG recordings from 28 745 patients (20-60 years old), the AI model was developed to detect verified LVH from transthoracic echocardiography and evaluated on an independent cohort. Two hundred twenty-five patients from Japan were externally validated. Cardiologists' diagnosis of LVH was based on conventional ECG criteria. The area under the curve (AUC), sensitivity, and specificity were applied to evaluate the model performance. A Cox regression model estimated the independent effects of AI-predicted LVH on cardiovascular or all-cause death. Results: The AUC of the AI model in diagnosing LVH was 0.89 (sensitivity: 90.3%, specificity: 69.3%), which was significantly better than that of the cardiologists' diagnosis (AUC, 0.64). In the second independent cohort, the diagnostic performance of the AI model was consistent (AUC, 0.86; sensitivity: 85.4%, specificity: 67.0%). After a follow-up of 6 years, AI-predicted LVH was independently associated with higher cardiovascular or all-cause mortality (hazard ratio, 1.91 [1.04-3.49] and 1.54 [1.20-1.97], respectively). The predictive power of the AI model for mortality was consistently valid among patients of different ages, sexes, and comorbidities, including hypertension, diabetes, stroke, heart failure, and myocardial infarction. Last, we also validated the model in the international independent cohort from Japan (AUC, 0.83). Conclusions: The AI model improved the detection of LVH and mortality prediction in the young to middle-aged population and represented an attractive tool for risk stratification. Early identification by the AI model gives every chance for timely treatment to reverse adverse outcomes.
    日期: 2022-08
    關聯: Circulation-Cardiovascular Quality and Outcomes. 2022 Aug;15(8):Article number e008360.
    Link to: http://dx.doi.org/10.1161/CIRCOUTCOMES.121.008360
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1941-7705&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000840850800006
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85136090243
    顯示於類別:[吳易謙] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    ISI000840850800006.pdf830KbAdobe PDF134檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋