國家衛生研究院 NHRI:Item 3990099045/14577
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12145/12927 (94%)
造访人次 : 857718      在线人数 : 766
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14577


    题名: Neuroplasticity of peripheral axonal properties after ischemic stroke
    作者: Chen, HJ;Tani, J;Lin, CSY;Chang, TS;Lin, YC;Hsu, TW;Sung, JY
    贡献者: NHRI Graduate Student Program
    摘要: Objective This study investigated how peripheral axonal excitability changes in ischemic stroke patients with hemiparesis or hemiplegia, reflecting the plasticity of motor axons due to corticospinal tract alterations along the poststroke stage. Methods Each subject received a clinical evaluation, nerve conduction study, and nerve excitability test. Nerve excitability tests were performed on motor median nerves in paretic and nonparetic limbs in the acute stage of stroke. Control nerve excitability test data were obtained from age-matched control subjects. Some patients underwent excitability examinations several times in subacute or chronic stages. Results A total of thirty patients with acute ischemic stroke were enrolled. Eight patients were excluded due to severe entrapment neuropathy in the median nerve. The threshold current for 50% compound muscle action potential (CMAP) was higher in paretic limbs than in control subjects. Furthermore, in the cohort with severe patients (muscle power ≤ 3/5 in affected hands), increased threshold current for 50% CMAP and reduced subexcitability were noted in affected limbs than in unaffected limbs. In addition, in the subsequent study of those severe patients, threshold electrotonus increased in the hyperpolarization direction: TEh (100–109 ms), and the minimum I/V slope decreased. The above findings suggest the less excitable and less accommodation in lower motor axons in the paretic limb caused by ischemic stroke. Conclusion Upper motor neuron injury after stroke can alter nerve excitability in lower motor neurons, and the changes are more obvious in severely paretic limbs. The accommodative changes of axons progress from the subacute to the chronic stage after stroke. Further investigation is necessary to explore the downstream effects of an upper motor neuron insult in the peripheral nerve system.
    日期: 2022-10-04
    關聯: PLoS ONE. 2022 Oct 4;17(10):Article number e0275450.
    Link to: http://dx.doi.org/10.1371/journal.pone.0275450
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1932-6203&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000925052200030
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139573373
    显示于类别:[其他] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85139573373.pdf1117KbAdobe PDF110检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈