English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12340/13512 (91%)
造訪人次 : 2254930      線上人數 : 229
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14604


    題名: Global biobank meta-analysis initiative: Powering genetic discovery across human disease
    作者: Zhou, W;Kanai, M;Wu, KHH;Rasheed, H;Tsuo, K;Hirbo, JB;Wang, Y;Bhattacharya, A;Zhao, H;Namba, S;Surakka, I;Wolford, BN;Lo Faro, V;Lopera-Maya, EA;Läll, K;Favé, MJ;Partanen, JJ;Chapman, SB;Karjalainen, J;Kurki, M;Maasha, M;Brumpton, BM;Chavan, S;Chen, TT;Daya, M;Ding, Y;Feng, YCA;Guare, LA;Gignoux, CR;Graham, SE;Hornsby, WE;Ingold, N;Ismail, SI;Johnson, R;Laisk, T;Lin, K;Lv, J;Millwood, IY;Moreno-Grau, S;Nam, K;Palta, P;Pandit, A;Preuss, MH;Saad, C;Setia-Verma, S;Thorsteinsdottir, U;Uzunovic, J;Verma, A;Zawistowski, M;Zhong, X;Afifi, N;Al-Dabhani, KM;Al Thani, A;Bradford, Y;Campbell, A;Crooks, K;de Bock, GH;Damrauer, SM;Douville, NJ;Finer, S;Fritsche, LG;Fthenou, E;Gonzalez-Arroyo, G;Griffiths, CJ;Guo, Y;Hunt, KA;Ioannidis, A;Jansonius, NM;Konuma, T;Lee, MTM;Lopez-Pineda, A;Matsuda, Y;Marioni, RE;Moatamed, B;Nava-Aguilar, MA;Numakura, K;Patil, S;Rafaels, N;Richmond, A;Rojas-Muñoz, A;Shortt, JA;Straub, P;Tao, R;Vanderwerff, B;Vernekar, M;Veturi, Y;Barnes, KC;Boezen, M;Chen, Z;Chen, CY;Cho, J;Smith, GD;Finucane, HK;Franke, L;Gamazon, ER;Ganna, A;Gaunt, TR;Ge, T;Huang, H;Huffman, J, .;et al.
    貢獻者: Center for Neuropsychiatric Research
    摘要: Biobanks facilitate genome-wide association studies (GWASs), which have mapped genomic loci across a range of human diseases and traits. However, most biobanks are primarily composed of individuals of European ancestry. We introduce the Global Biobank Meta-analysis Initiative (GBMI)—a collaborative network of 23 biobanks from 4 continents representing more than 2.2 million consented individuals with genetic data linked to electronic health records. GBMI meta-analyzes summary statistics from GWASs generated using harmonized genotypes and phenotypes from member biobanks for 14 exemplar diseases and endpoints. This strategy validates that GWASs conducted in diverse biobanks can be integrated despite heterogeneity in case definitions, recruitment strategies, and baseline characteristics. This collaborative effort improves GWAS power for diseases, benefits understudied diseases, and improves risk prediction while also enabling the nomination of disease genes and drug candidates by incorporating gene and protein expression data and providing insight into the underlying biology of human diseases and traits.
    日期: 2022-10-12
    關聯: Cell Genomics. 2022 Oct 12;2(10):Article number 100192.
    Link to: http://dx.doi.org/10.1016/j.xgen.2022.100192
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139994619
    顯示於類別:[林彥鋒] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85139994619.pdf3471KbAdobe PDF430檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋