國家衛生研究院 NHRI:Item 3990099045/14626
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12189/12972 (94%)
造访人次 : 953565      在线人数 : 410
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14626


    题名: Effects of antibiotics and metals on lung and intestinal microbiome dysbiosis after sub-chronic lower-level exposure of air pollution in ageing rats
    作者: Laiman, V;Lo, YC;Chen, HC;Yuan, TH;Hsiao, TC;Chen, JK;Chang, CW;Lin, TC;Li, SJ;Chen, YY;Heriyanto, DS;Chung, KF;Chuang, KJ;Ho, KF;Chang, JH;Chuang, HC
    贡献者: Institute of Biomedical Engineering and Nanomedicine
    摘要: We investigated the effects of antibiotics, drugs, and metals on lung and intestinal microbiomes after sub-chronic exposure of low-level air pollution in ageing rats. Male 1.5-year-old Fischer 344 ageing rats were exposed to low-level traffic-related air pollution via whole-body exposure system for 3 months with/without high-efficiency particulate air (HEPA) filtration (gaseous vs. particulate matter with aerodynamic diameter of ≤2.5 µm (PM2.5) pollution). Lung functions, antibiotics, drugs, and metals in lungs were examined and linked to lung and fecal microbiome analyses by high-throughput sequencing analysis of 16 s ribosomal (r)DNA. Rats were exposed to 8.7 μg/m3 PM2.5, 10.1 ppb NO2, 1.6 ppb SO2, and 23.9 ppb O3 in average during the study period. Air pollution exposure decreased forced vital capacity (FVC), peak expiratory flow (PEF), forced expiratory volume in 20 ms (FEV20), and FEF at 25∼75% of FVC (FEF25–75). Air pollution exposure increased antibiotics and drugs (benzotriazole, methamphetamine, methyl-1 H-benzotriazole, ketamine, ampicillin, ciprofloxacin, pentoxifylline, erythromycin, clarithromycin, ceftriaxone, penicillin G, and penicillin V) and altered metals (V, Cr, Cu, Zn, and Ba) levels in lungs. Fusobacteria and Verrucomicrobia at phylum level were increased in lung microbiome by air pollution, whereas increased alpha diversity, Bacteroidetes and Proteobacteria and decreased Firmicutes at phylum level were occurred in intestinal microbiome. Lung function decline was correlated with increasing antibiotics, drugs, and metals in lungs as well as lung and intestinal microbiome dysbiosis. The antibiotics, drugs, and Cr, Co, Ca, and Cu levels in lung were correlated with lung and intestinal microbiome dysbiosis. The lung microbiome was correlated with intestinal microbiome at several phylum and family levels after air pollution exposure. Our results revealed that antibiotics, drugs, and metals in the lung caused lung and intestinal microbiome dysbiosis in ageing rats exposed to air pollution, which may lead to lung function decline.
    日期: 2022-11
    關聯: Ecotoxicology and Environmental Safety. 2022 Nov;246:Article number 114164.
    Link to: http://dx.doi.org/10.1016/j.ecoenv.2022.114164
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0147-6513&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000876399100003
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85139854529
    显示于类别:[陳仁焜] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85139854529.pdf2542KbAdobe PDF148检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈