Mussel-inspired adhesive hydrogels have been developed in biomedical fields due to their strong adhesive property, cohesive capability, biocompatibility, and hemostatic ability. Catecholfunctionalized chitosan is a potential polymer used to prepare adhesive hydrogels. However, the unique gelation mechanism and self-healing properties of catechol-grafted chitosan alone have not yet been explored. Herein, catechol-grafted chitosan (CC) was synthesized and further concentrated to obtain the self-healing CC hydrogels. The gelation mechanism of CC hydrogels may be attributed to the formation of hydrogen bonding, cationic-pi interactions, Michael addition, or Schiff base reactions during concentration phases. Rheological studies showed that the CC hydrogel owned self-healing properties in repeated damage-healing cycles. Coherent small-angle X-ray scattering (SAXS) analyses revealed the formation of a mesoscale structure (similar to 9 nm) as the solid content of the hydrogel increased. In situ SAXS combined with rheometry verified the strain-dependent behavior of the CC hydrogel. The CC hydrogel displayed the osmotic-responsive behavior and enhanced adhesive strength (0.38 N/cm(2)) after immersion in the physiological saline. The CC scaffold prepared by lyophilizing the CC hydrogel revealed a macroporous structure (similar to 200 mu m), a high swelling ratio (9656%), good compressibility, and durability. This work provides an insight into the design of using chitosan-catechol alone to produce hydrogels or scaffolds with tunable mechanical properties for further applications in biomedical fields.