國家衛生研究院 NHRI:Item 3990099045/14670
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 12500/13673 (91%)
造访人次 : 2559922      在线人数 : 227
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    主页登入上传说明关于NHRI管理 到手机版


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14670


    题名: Model development and validation of personal exposure to PM2.5 among urban elders
    作者: Hsu, WT;Ku, CH;Chen, MJ;Wu, CD;Lung, SCC;Chen, YC
    贡献者: National Institute of Environmental Health Sciences
    摘要: Indirect measurements through a combination of microenvironment concentrations and personal activity diaries provide a potentially useful alternative for PM2.5 exposure estimates. This study was to optimize a personal exposure model based on spatiotemporal model predictions for PM2.5 exposure in a sub-cohort study. Personal, home indoor, home outdoor, and ambient monitoring data of PM2.5 were conducted for an elderly population in the Taipei city of Taiwan. The proposed microenvironment exposure (ME) models incorporate PM2.5 measurements and individual time-activity information with a generalized estimating equation (GEE) analysis. We evaluated model performance with daily personal PM2.5 exposure based on the coefficient of determination, accuracy, and mean bias error. Ambient and home outdoor measures as exposure surrogates are likely to under- and overestimate personal exposure to PM2.5 in our study population, respectively. Measured and predicted indoor exposures were highly correlated with personal PM2.5 exposure. The awareness of peculiar smells is an important factor that significantly increases personal PM2.5 exposure by 46–70%. The model incorporating home indoor PM2.5 can achieve the highest agreement (R2 = 0.790) with personal exposure and the lowest measurement error. The ME model with the GEE analysis combining home outdoor PM2.5 determined by LUR model with a machine learning technique can improve the prediction (R2 = 0.592) of personal PM2.5 exposure, compared with the prediction of the traditional LUR model (R2 = 0.385).
    日期: 2023-01-01
    關聯: Environmental Pollution. 2023 Jan 1;316(Part 1):Article number 120538.
    Link to: http://dx.doi.org/10.1016/j.envpol.2022.120538
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=0269-7491&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000892065400001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85140911569
    显示于类别:[陳裕政] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    SCP85140911569.pdf1102KbAdobe PDF153检视/开启


    在NHRI中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈