國家衛生研究院 NHRI:Item 3990099045/14742
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12145/12927 (94%)
造訪人次 : 912938      線上人數 : 1188
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14742


    題名: Noninvasive blood oxygen, heartbeat rate, and blood pressure parameter monitoring by photoplethysmography signals
    作者: Ku, CJ;Wang, Y;Chang, CY;Wu, MT;Dai, ST;Liao, LD
    貢獻者: Institute of Biomedical Engineering and Nanomedicine
    摘要: The popularization of long-term invasive tools for continuously monitoring blood pressure remains challenging. However, with the rising popularity of wearable personal health management devices, non-cuff blood pressure measurement technology that applies electrocardiography (ECG) and photoplethysmography (PPG) has gradually received increasing attention. In particular, whether blood pressure can be measured continuously by the PPG signal alone is of great interest. In this study, we aim to develop a device that includes systolic and diastolic blood pressure calculation formulas derived from characteristic waveform points in the PPG time domain and that can measure blood oxygenation and heart rate. This device applies empirical formulas developed by PPG waveforms in the PhysioNet MIMIC-II database to calculate blood pressure. The systolic and diastolic pressures are then compared with the actual blood pressures obtained from invasive blood pressure waveforms to verify the effectiveness and feasibility of the complete developed system. Overall, 263 waveforms with double peaks and 261 waveforms with only a single peak totaling 524 sets of data are used to derive the empirical formulas. The systolic blood pressure estimation result using single peak analysis has an excessively large error exceeding ±40 mmHg, providing no reference value. However, systolic blood pressure estimation is notably better in double peak analysis, with error values reducing to approximately 23 mmHg. Diastolic pressure estimation errors are low with both single (±7 mmHg) and double peak (±4 mmHg) analyses. The error is lower in double-peak analysis than in single-peak analysis for obtaining systolic pressure from PPG waves. We plan to use PPG to detect additional physiological parameters in the future, e.g., respiratory rate, heart rate variability, or irregular heartbeat, to further enhance the functionality of PPG-based wearable devices.
    日期: 2022-11
    關聯: Heliyon. 2022 Nov;8(11):Article number e11698.
    Link to: http://dx.doi.org/10.1016/j.heliyon.2022.e11698
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2405-8440&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000904307000013
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85143123003
    顯示於類別:[廖倫德] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    SCP85143123003.pdf2908KbAdobe PDF244檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋