國家衛生研究院 NHRI:Item 3990099045/14769
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 12145/12927 (94%)
Visitors : 917693      Online Users : 1333
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://ir.nhri.org.tw/handle/3990099045/14769


    Title: Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing
    Authors: Chen, F;Wang, X;Jang, SK;Quach, BC;Weissenkampen, JD;Khunsriraksakul, C;Yang, L;Sauteraud, R;Albert, CM;Allred, NDD;Arnett, DK;Ashley-Koch, AE;Barnes, KC;Barr, RG;Becker, DM;Bielak, LF;Bis, JC;Blangero, J;Boorgula, MP;Chasman, DI;Chavan, S;Chen, YDI;Chuang, LM;Correa, A;Curran, JE;David, SP;Fuentes, L;Deka, R;Duggirala, R;Faul, JD;Garrett, ME;Gharib, SA;Guo, X;Hall, ME;Hawley, NL;He, J;Hobbs, BD;Hokanson, JE;Hsiung, CA;Hwang, SJ;Hyde, TM;Irvin, MR;Jaffe, AE;Johnson, EO;Kaplan, R;Kardia, SLR;Kaufman, JD;Kelly, TN;Kleinman, JE;Kooperberg, C;Lee, IT;Levy, D;Lutz, SM;Manichaikul, AW;Martin, LW;Marx, O;McGarvey, ST;Minster, RL;Moll, M;Moussa, KA;Naseri, T;North, KE;Oelsner, EC;Peralta, JM;Peyser, PA;Psaty, BM;Rafaels, N;Raffield, LM;Reupena, MS;Rich, SS;Rotter, JI;Schwartz, DA;Shadyab, AH;Sheu, WHH;Sims, M;Smith, JA;Sun, X;Taylor, KD;Telen, MJ;Watson, H;Weeks, DE;Weir, DR;Yanek, LR;Young, KA;Young, KL;Zhao, W;Hancock, DB;Jiang, B;Vrieze, S;Liu, DJ
    Contributors: Institute of Population Health Sciences
    Abstract: Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction.
    Date: 2023-02
    Relation: Nature Genetics. 2023 Feb;55(2):291-300.
    Link to: http://dx.doi.org/10.1038/s41588-022-01282-x
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=1061-4036&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000928207700003
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85146834444
    Appears in Collections:[Chao A. Hsiung] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    SCP85146834444.pdf2912KbAdobe PDF210View/Open


    All items in NHRI are protected by copyright, with all rights reserved.

    Related Items in TAIR

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback