國家衛生研究院 NHRI:Item 3990099045/14836
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 12340/13424 (92%)
造訪人次 : 2000199      線上人數 : 163
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    主頁登入上傳說明關於NHRI管理 到手機版
    請使用永久網址來引用或連結此文件: http://ir.nhri.org.tw/handle/3990099045/14836


    題名: Experimental verification for numerical simulation of thalamic stimulation-evoked calcium-sensitive fluorescence and electrophysiology with self-assembled multifunctional optrode
    作者: Liang, YW;Lai, ML;Chiu, FM;Tseng, HY;Lo, YC;Li, SJ;Chang, CW;Chen, PC;Chen, YY
    貢獻者: NHRI Graduate Student Program
    摘要: Owing to its capacity to eliminate a long-standing methodological limitation, fiber photometry can assist research gaining novel insight into neural systems. Fiber photometry can reveal artifact-free neural activity under deep brain stimulation (DBS). Although evoking neural potential with DBS is an effective method for mediating neural activity and neural function, the relationship between DBS-evoked neural Ca(2+) change and DBS-evoked neural electrophysiology remains unknown. Therefore, in this study, a self-assembled optrode was demonstrated as a DBS stimulator and an optical biosensor capable of concurrently recording Ca(2+) fluorescence and electrophysiological signals. Before the in vivo experiment, the volume of tissue activated (VTA) was estimated, and the simulated Ca(2+) signals were presented using Monte Carlo (MC) simulation to approach the realistic in vivo environment. When VTA and the simulated Ca(2+) signals were combined, the distribution of simulated Ca(2+) fluorescence signals matched the VTA region. In addition, the in vivo experiment revealed a correlation between the local field potential (LFP) and the Ca(2+) fluorescence signal in the evoked region, revealing the relationship between electrophysiology and the performance of neural Ca(2+) concentration behavior. Concurrent with the VTA volume, simulated Ca(2+) intensity, and the in vivo experiment, these data suggested that the behavior of neural electrophysiology was consistent with the phenomenon of Ca(2+) influx to neurons.
    日期: 2023-02-13
    關聯: Biosensors. 2023 Feb 13;13(2):Article number 265.
    Link to: http://dx.doi.org/10.3390/bios13020265
    JIF/Ranking 2023: http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=NHRI&SrcApp=NHRI_IR&KeyISSN=2079-6374&DestApp=IC2JCR
    Cited Times(WOS): https://www.webofscience.com/wos/woscc/full-record/WOS:000938463300001
    Cited Times(Scopus): https://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85148964646
    顯示於類別:[其他] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    PUB36832031.pdf6066KbAdobe PDF236檢視/開啟


    在NHRI中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋